奇妙数学文化的读后感450字(四下《奇妙的数学文化》读后感怎么写)

发布时间: 2023-06-08 05:03:56 来源: 励志妙语 栏目: 读后感 点击: 108

奇妙的数学文化读后感。,看了第一章大数的认识;从比比看谁大谁小,我发现了太阳系以太阳这颗恒星为中心,知道了八大行星离太阳的远近,比较了他们到...

奇妙数学文化的读后感450字(四下《奇妙的数学文化》读后感怎么写)

奇妙的数学文化读后感。

    看了第一章大数的认识;从比比看谁大谁小,我发现了太阳系以太阳这颗恒星为中心,知道了八大行星离太阳的远近,比较了他们到太阳的距离大小,距离越大,离太阳越远,距离越小,离太阳越近。              谁读得快又准,这里我知道了读大数要从高位往低位读,在神出鬼没的0里,我知道了,零的读法比较特殊,写在每个数的末尾处的零,无论有几个都不读,放在中间的零应该怎么读这本书都交给了我。                                                              在四舍五入的窍门儿里,我知道了精确数和近似数有什么区别,四舍五入法可以将一个数估计为不同精度的近似数,真奇妙。                    这里的知识太多了,十进制与二进制,纵横交错的算筹,原来古人说的一纵十横,百立千僵,千十相望,万百相当,就是算筹的规则啊。                                                              数学就是奇妙的世界,要冷静运用多种办法去解决问题,观察出他们,计算出他们复杂的算式。

奇妙的数学文化读后感五

      这本书我已经读到了尾声,还有最后的两张我就要读完了。这后面呢,有数学广角,我不太懂,也不太明白,我只知道可以把复杂的问题简单化,甚至迎刃而解,我也怕遇到复杂的问题,想不出好办法解决,所以等到开学老师讲课的时候,认真听,然后学会好多好多的知识才能够运用的生活学习中。

        生活中有很多问题,和课本学的知识规律是一样的,要从他们身上找规律,古代的人就可聪明,最经典的就是田忌赛马,孙斌就用上了以弱胜强对策问题,赢得了比赛。我要向古人学习,灵活运用。

奇妙的数学文化读后感三

      我看啦三位数乘两位数。我有些不明白,但我知道应该和我上学期学的有联系,解决问题的一种形式,它是发展的重要手段。也是主要标志之一。     

      我看画图也能算乘法,我也是不太懂,等开学啦!老师会教我的。在这里我知道速度,时间,路程这个数量间的关系很重要.

      学习数学就要巧用数学知识,不要局限于一种方法,带着数学的眼光,会发现到处都有数学,要把所学的知识灵活的运用起来,善于观察,找到规律,计算起来更简便。

        我会好好学习数学,我喜欢数学。

奇妙的数学文化读后感二

    读了这本书的公顷和平方千米,我知道公顷和平方千米在我们生活中都有着很大的作用。

    角的度量我知道了线段,射线,直线都是线,但它们有相同的地方,也有不同的地方,线段,射线都是直线的一部分,这一点我会记住的。数角也有方法的掌握方法,数起来就很简单,我会牢牢学习,我们要有序的观察和思考,才会不重不漏。我还要学会用量角器呢,等开学了,我要努力的学习。

    《奇妙的数学文化》 这本书挺有意思的,我还会继续学习,我知道这里面会教我很多很多的知识。

数学文化读后感

数学文化读后感

  认真读完一本名著后,大家心中一定是萌生了不少心得,写一份读后感,记录收获与付出吧。想必许多人都在为如何写好读后感而烦恼吧,下面是我收集整理的数学文化读后感,供大家参考借鉴,希望可以帮助到有需要的朋友。

  数学文化读后感1

  上一学期,就断断续续地在阅读北京东路小学张齐华老师的《审视课堂:张齐华与小学数学文化》一书,假期中更是再次认真拜读了一遍。作者张齐华是一位年轻的教师,已经得到众多名家的认可,也受到广大老师的赞同。张齐华老师致力于在实践层面还原数学的本来面目,演绎数学的文化魅力,展现数学的意趣与价值。

  张齐华老师的教学,给人以惊奇之感,有方法的领悟、思想的启迪、精神的熏陶。设计自然流畅、环节处理细腻、构思巧妙魅力、教学到位厚重,很是值得我学习。

  张老师的座右铭“不重复别人的,更重复自己”,才让他不断地思考、不断地创新。《圆的认识》一课,在准备时“由外而内”的跨越,让我看到张老师在新一轮《圆的认识》的探索与实践,尽管困难重重,但张老师坚信:路总会重新走出来的,只要你愿意去开辟。在思考后一个个问题的出现,张老师坦然面对静心解决,使《圆的认识》一课再次呈现了一些别样的意味。看着实录,就像走进了张老师的课堂,俨然像在品一杯好茶,只有静心悟道才是至理。

  张老师的《交换律》坚信了数学向着纵深处开掘的至理,读这份案例为其深度和细腻而震撼。对数学文化的追求正是本节课的显著特色,这种数学文化特质不仅外释为一份感性的素材,更内蕴成一种理性的思辨。“猜想—验证—猜想—验证—猜想”犹如泛起涟漪的思维波,思维的确定性、变通性、辩证性、得以相互印染,这种质辩的深入性正是我们孜孜以求的教学本质内涵和教学价值取向。《认识整万数》一课,让我了解到张老师是如何破解数学知识内在的结构的。

  新颖的教学设计因为有了教师对教学内容本身的深刻理解作支撑,而获得了更加丰富的内涵。精彩的四十分钟,来自于课外日日夜夜,来自于教师对教材内容和数学知识结构的深入把握,对数学规律方法的深层次揣摩,更重要的是,对学生已有知识的调查了解。

  张齐华老师带给我们的不仅是一节课、教学方法与理念,还有对教育、对专业的执着追求,感受到一名数学教师在艺术王国里演绎精彩的真实历程。张老师的教育理念给我指明了教学的方向,让我学习如何研究我们的数学,如何让我们的数学更有数学文化的味道。

  数学文化读后感2

  在没有读这本书之前,可能很多人都会觉得数学可能只有那些对抽象思维特别感兴趣的人才会去研究,才会去思考。数学与我们非常遥远,在我们的生活和文化观念中,数学最多起到为我们日常生活服务的作用,至于数学本身,无法给我们带来任何的快乐和满足。

  如果您读完了这本书,您的上述观念无疑将发生根本性的转变。本书作者从历史的角度,详细地为我们描述了数学如何在与各种文化、思想和人类的旨趣互动的背景下产生、发展和成熟的。

  对于数学的发展而言,从古希腊开始,就和人对美的追求,对灵魂的解放联系在一起,而到了近代科学,数学不仅和科学的发展联系起来,而且也为西方文化的发展,文明的进步,作出了许多贡献。而到了现代,数学所起的作用可能与我们更密切,当一般人极力逃避数学的时候,我们在生活中的各种行为和选择,却往往受到数学的影响,如概率统计在选举和天气上的作用,概率对决定论的破坏以及对人类自由的维护,等等。

  本书作者没有将对数学与西方文化的关系的论述停留在空洞的哲学空话之中,相反,他从数学产生以来西方文化对数学发展的影响,以及数学如何反过来影响西方文化的各种具体的细节,用他生动的语言给我们再现出来,更难得的是,当涉及到许多哲学上的问题的时候,他既没有像一般科学史学家那样回避或忽视哲学问题和科学的联系,另一方面又能够以清晰的语言尽可能的把握住哲学的真正的观点。虽然有些地方依旧存在偏差或简化,但对于一个数学史学家来说,实在已经很不容易了。

  通过本书的精彩论述,我们也可以看出,数学的发展单纯依靠实用的态度是不行的,如果数学家无法从数学研究中获得乐趣,那么,就会像古罗马那样,数学的.传统迅速衰竭。而要让人能够从数学中获得乐趣和激情,那么惟有在合适的文化的土壤中,才是可能的。

  而对于个人的发展来说,数学不仅仅是一门工具,还是具有内在价值的精神产物和文明成果,在一个人运用数学进行思维的过程中,所锻炼的不仅仅是他的思维方法,更重要的是,他的许多观念也会发生变化,他会对伦理上的决定论和非决定论,产生新的认识,从而更大和更深刻的领悟人类的自由,他会了解所谓的客观的审美标准是什么,并意识到数学中存在的和谐、对称之美的本质及其独特性,他甚至会根据自然的数学化来重新认识和领会世界,并从而为之高声赞叹。

  这本书揭示了数学世界中最引人入胜的一面,相信大多数人都能从这部书里面领略到数学对人性以及人的生活的魅力的。

  数学文化读后感3

  在大学初学《数学史》时,我便对数学史产生了浓厚的兴趣,并由此爱上了数学这一学科。工作后,我成为了一名数学教师。我常常在想,如果能够把数学文化融入到课堂中来,那是一件多么有意思的事。于是,我仔细研读了《数学文化》一书,获益颇多。

  众所周知,数学是人类文明的一个重要组成部分。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。

  读完《数学文化》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。

  数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

  数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立……这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。

  在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。 天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!

  数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。

  从文化的角度去看数学,是一个新问题。不过我相信,一旦你踏进数学文化的门槛,就会惊奇地发现这是一个美仑美奂的奇异世界。而本文所提及的一些东西还只是隔岸观火的皮毛,相信随着人们对数学文化的深入研究,一定会呈现给人类一个更加精彩的世界。总之,数学文化是一个比较精彩的文化,是一个未知的我们广大青少年去了解的文化,慢慢体会,别有一般滋味在里面。

本文标题: 奇妙数学文化的读后感450字(四下《奇妙的数学文化》读后感怎么写)
本文地址: http://www.lzmy123.com/duhougan/313978.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    关于又见构树花的读后感(《又见构树花》读后感600字)交出一件东西就能隐形读后感(嘭嘭嘭读后感)
    Top