恒星的演化包括哪几个阶段行星诞生于星云,宇宙尘埃在万有引力的作用下彼此吸引,聚集,挤压产生的热量逐渐积累,最终点燃了聚集的物质,...
恒星的演化包括哪几个阶段
行星诞生于星云,宇宙尘埃在万有引力的作用下彼此吸引,聚集,挤压产生的热量逐渐积累,最终点燃了聚集的物质,恒星辉煌的一生,就此诞生。
走过亿万年的主序星阶段后,恒星内部的氢耗尽,再没有核聚变支撑的外壳在强大的引力作用下向内挤压恒星,核聚变产生的氦在聚集,聚集在一起的氦最终发生了聚变,温度的降低使恒星颜色变红,氦聚变的能量将恒星的外层外推,形成红(超)巨星。
红(超)巨星阶段结束后,小质量恒星,比如我们的太阳,会变成白矮星,白矮星的体积小、亮度低,但质量大、密度极高。它的密度在1000万吨/米3左右。白矮星是一颗已死亡的恒星,中心的热核反应已停止 ,在冷却的同时对外发光发热。
质量更大的恒星在死亡前会发生一次大爆发,叫做超新星爆发,所释放的能量和亮光相当于十亿颗太阳。每一颗恒星一生之中最多只可能发生一次超新星爆发。
超新星爆发后,剩余的物质有两种存在形态——中子星和黑洞。质量约是太阳4~10倍的恒星在超新星爆炸的过程,遗留下来的核心变成一颗体积很小,质量却很大的中子星,由中子构成,密度为水的1014倍,仅1cm3的质量就有全球人类那么重,直径仅为30km。
质量大于10倍太阳质量的恒星,超新星爆发后会变为黑洞。黑洞会把附近所有的物质都吸进去,就连光线也会被吞没,所以我们是看不见黑洞的。但是我们可以从邻近恒星的物质被吸入黑洞时的情形,证明黑洞的存在。
一般认为超大质量黑洞不是由单个恒星形成的,而是多个黑洞合并,生长形成。 中间的“影子”约是黑洞视界的2.6倍,外侧光晕是黑洞引力造成的“反射”和吸积盘的发出的光被弯折的效果。
吸积盘在高速转动以维持不掉入黑洞,由于多普勒集束效应,转向我们的一侧更亮,转离我们的一侧更暗。
扩展资料
恒星内部热核反应所产生的能量以对流、传导和辐射三种方式传输出来。由于大多数恒星的物质是气态的,热传导作用不大,只有内部极其致密的特殊恒星(例如白矮星),内部热传导才比较显著。
大多数恒星内部主要依靠辐射来传输核反应产生的能量,传输的速度相当慢,例如太阳把它深达70万千米的中心处的能量传输到表面,需要1000万年。
对流传输能量的速度比辐射快得多,但是不同质量的恒星,对流层的位置和厚度很不一样。主星序左上部的恒星,质量大,中心区是小的对流核,外面是辐射包层。主星序中下部的恒星,质量较小,内部辐射层很厚,仅表面有较薄的对流层。
主星序右下部的恒星,质量很小,整个恒星是对流的。恒星内部产生的能量决定了它的表面温度和光度。物理定律把恒星内部的运动、能量的产生、能量的传递和消耗与它的温度、压力、密度、成分等因素联系了起来。
其中一个因素的变化会引起其他因素的变化。因此,研究天体的演化就是要在物理定律的制约下,说明各种因素如何协调地变化。
参考资料来源:百度百科-恒星演化
我们首先来看恒星的一生:
恒星的诞生
在星际空间普遍存在着极其稀薄的物质,主要由气体和尘埃构成。它们的温度约10~100K,密度约10-24~10-23g/cm3,相当于1cm3中有1~10个氢原子。星际物质在空间的分布并不是均匀的,通常是成块地出现,形成弥漫的星云。星云里3/4质量的物质是氢,处于电中性或电离态,其余约?是氦以及极少数比氦更重的元素。在星云的某些区域还存在气态化合物分子,如氢分子、一氧化碳分子等。如果星云里包含的物质足够多,那么它在动力学上就是不稳定的。在外界扰动的影响下,星云会向内收缩并分裂成较小的团块,经过多次的分裂和收缩,逐渐在团块中心形成了致密的核。当核区的温度升高到氢核聚变反应可以进行时,一颗新恒星就诞生了。'
主序星
恒星以内部氢核聚变为主要能源的发展阶段就是恒星的主序阶段。处于主序阶段的恒星称为主序星。主序阶段是恒星的青壮年期,恒星在这一阶段停留的时间占整个寿命的90%以上。这是一个相对稳定的阶段,向外膨胀和向内收缩的两种力大致平衡,恒星基本上不收缩也不膨胀。恒星停留在主序阶段的时间随着质量的不同而相差很多。质量越大,光度越大,能量消耗也越快,停留在主序阶段的时间就越短。例如:质量等于太阳质量的15倍、5倍、1倍、0.2倍的恒星,处于主序阶段的时间分别为一千万年、七千万年、一百亿年和一万亿年。
目前的太阳也是一颗主序星。太阳现在的年龄为46亿多年,它的主序阶段已过去了约一半的时间,还要50亿年才会转到另一个演化阶段。与其他恒星相比,太阳的质量、温度和光度都大概居中,是一颗相当典型的主序星。主序星的很多性质可以从研究太阳得出,恒星研究的某些结果也可以用来了解太阳的某些性质。
红巨星与红超巨星
当恒星中心区的氢消耗殆尽形成由氦构成的核球之后,氢聚变的热核反应就无法在中心区继续。这时引力重压没有辐射压来平衡,星体中心区就要被压缩,温度会急剧上升。中心氦核球温度升高后使紧贴它的那一层氢氦混合气体受热达到引发氢聚变的温度,热核反应重新开始。如此氦球逐渐增大,氢燃烧层也跟着向外扩展,使星体外层物质受热膨胀起来向红巨星或红超巨星转化。转化期间,氢燃烧层产生的能量可能比主序星时期还要多,但星体表面温度不仅不升高反而会下降。其原因在于:外层膨胀后受到的内聚引力减小,即使温度降低,其膨胀压力仍然可抗衡或超过引力,此时星体半径和表面积增大的程度超过产能率的增长,因此总光度虽可能增长,表面温度却会下降。质量高于4倍太阳质量的大恒星在氦核外重新引发氢聚变时,核外放出来的能量未明显增加,但半径却增大了好多倍,因此表面温度由几万开降到三、四千开,成为红超巨星。质量低于4倍太阳质量的中小恒星进入红巨星阶段时表面温度下降,光度却急剧增加,这是因为它们外层膨胀所耗费的能量较少而产能较多。
预计太阳在红巨星阶段将大约停留10亿年时间,光度将升高到今天的好几十倍。到那时侯,地面的温度将升高到今天的两三倍,北温带夏季最高温度将接近100℃。
大质量恒星的死亡
大质量恒星经过一系列核反应后,形成重元素在内、轻元素在外的洋葱状结构,其核心主要由铁核构成。此后的核反应无法提供恒星的能源,铁核开始向内坍塌,而外层星体则被炸裂向外抛射。爆发时光度可能突增到太阳光度的上百亿倍,甚至达到整个银河系的总光度,这种爆发叫做超新星爆发。超新星爆发后,恒星的外层解体为向外膨胀的星云,中心遗留一颗高密天体。
金牛座里著名的蟹状星云就是公元1054年超新星爆发的遗迹。超新星爆发的时间虽短不及1秒,瞬时温度却高达万亿K,其影响更是巨大。超新星爆发对于星际物质的化学成分有关键影响,这些物质又是建造下一代恒星的原材料。
超新星爆发时,爆发与坍塌同时进行,坍塌作用使核心处的物质压缩得更为密实。理论分析证明,电子简并态不足以抗住大坍塌和大爆炸的异常高压,处在这么巨大压力下的物质,电子都被挤压到与质子结合成为中子简并态,密度达到10亿吨/立方厘米。由这种物质构成的天体叫做中子星。一颗与太阳质量相同的中子星半径只有大约10千米。
从理论上推算,中子星也有质量上限,最大不能超过大约3倍太阳质量。如果在超新星爆发后核心剩余物质还超过大约3倍太阳质量,中子简并态也抗不住所受的压力,只能继续坍缩下去。最后这团物质收缩到很小的时候,在它附近的引力就大到足以使运动最快的光子也无法摆脱它的束缚。因为光速是现知任何物质运动速度的极限,连光子都无法摆脱的天体必然能束缚住任何物质,所以这个天体不可能向外界发出任何信息,而且外界对它探测所用的任何媒介包括光子在内,一贴近它就不可避免地被它吸进去。它本身不发光并吞下包括辐射在内的一切物质,就象一个漆黑的无底洞,所以这种特殊的天体就被称为黑洞。黑洞有很多奇特的性质,对黑洞的研究在当代天文学及物理学中有重大的意义。
科学家发现,在木星和土星的表面散放出来的能量比它们所吸收的能量要多,这就意味着木星和土星也可以发光,只是它们发出的是远红外线而不是可见光而已。
当然还需自己了解,如想知道得更详细的话请你看一下有关书籍!采纳我吧!^_^^_^
恒星演化的条件有哪些?
单单根据序列性来判断恒星的演化途径还是不充分的,尤其是赫罗图表现的是两个因素联合构成的序列,我们不能任意认为恒星要沿哪一条曲线演变。我们还必须研究,在恒星的具体物理条件下,物理定律容许和要求它怎样变化,因此,我们要确定恒星所处的条件,按照物理定律来推算它的变化途径。
研究物体的变化,必须考虑两个最重要的因素:一个是力,一个是能量。物体的运动和转化是由力和能量两方面的物理定律来决定的。
物质的运动决定于它所受到的力。
任何物体都具有引力,因此它必须遵守万有引力定律。
由于热运动,物体内部具有压力。压力与物体的温度、密度、物质成分等因素是通过热力学定律联系起来的。
此外,还有自转引起的惯性离心力,以及电磁力、辐射斥力等等。
我们必须研究:在什么条件下恒星所受到的各种力达到平衡,什么条件下平衡破坏。在各种条件下起主要作用的力是什么?在力的作用下,恒星的密度、温度、体积、光度等参量又怎样变化?
一般情况下,引力和内部的压力是主要矛盾。如果内部压力不足以和引力相抗衡,星体就要收缩:反过来就要膨胀。缓慢变化中的天体可以说是处在大致平衡的状态。
天体的温度、光度决定于它的能量。
我们必须弄清天体能量的来源。天体为什么会发光?什么作用使天体“燃烧”这么长的时间?我们还需要弄清能量怎样传递、怎样消耗?能量的产生、传递、消耗和天体内部温度、压力、化学成分等因素的关系怎样?
关于天体所遵守的力学定律,人们早已完全掌握了。天体的能量传递和损耗也大致清楚了,对流和辐射使能量在天体内部传播,辐射使天体的能量传到空中损失掉;可是,关于天体内部能量的来源却一直不清楚,成为解决恒星演化问题的一个关键。
恒星的寿命是多长时间?受哪些因素影响呢?
恒星诞生于星云的观点被普遍接受,至少是作为一种普遍的天体诞生现象,我们通过对一些星云中的恒星雏形的观测证实了这一理论。在引力的影响下,星云的物质聚集在一起,变得越来越大,直到其质量达到一个点,其核心的温度和压力达到聚变反应的临界点。然后最大的团块被点燃,加入到恒星的行列中,或称原生星。
原生星继续吸纳它们周围的物质,清空它们周围的空间,而大多数恒星也在它们周围形成大小不一的行星,由剩余的物质组成。当一颗恒星的能量和引力达到平衡时,它就进入了主序阶段,也就是我们今天观察到的大多数物体所在的地方。主序星阶段相对稳定,其寿命与质量有关,如太阳的质量,其寿命约为100亿年,质量越小,寿命越长,反之亦然。一般质量为太阳0.5倍的恒星,其寿命约为180亿年,而质量为太阳10倍的恒星,其寿命可能不到1000万年。
当恒星的内部物质耗尽时,恒星就不能再维持主序星阶段,由于不平衡,恒星最终会爆炸,在爆炸前的短时间内膨胀成一个红巨星,这可能是恒星最辉煌的阶段。然后,这颗恒星完全完成了主序阶段,进入了生命的最后阶段,根据其质量的不同,演变成不同的结果。质量小于8个太阳质量的恒星会爆炸成白矮星;8至30个太阳质量的恒星会形成中子星,而30个太阳质量以上的恒星则形成黑洞。这就是主序星背后的三个不同方向的恒星。
这是天体的最后阶段,但它们不会永远持续下去,其最终结果也有点不同。例如,白矮星和中子星,它们内部不再产生新的能量,它们只是在使用它们形成时产生的能量。因为它们会承受来自外部的快速能量损失,所以它们会活得很久,以至于今天宇宙的138亿年都会被它们弄得相形见绌。白矮星和中子星都会慢慢地向太空释放能量,变得更冷,更不明亮,最终成为一个不发光的物体,至少在数千亿年或更长的时间里。黑洞不会永远存在。
如果认为本文对您有所帮助请赞助本站