简述采样定理及其含义1、采样定理是指,在采样频率要大于信号最高频率的2倍,才能无失真的保留信号完整信息。以下条件是可以保证信号的...
简述采样定理及其含义
1、采样定理是指,在采样频率要大于信号最高频率的2倍,才能无失真的保留信号完整信息。
以下条件是可以保证信号的完整信息在进行模拟/数字信号的转换过程中 当采样频率fs不小于信号中最高频率fmax的2倍 即 fs>=2fmax 时 采样之后的数字信号完整地保留了原始信号中的信息。
2、采样定理(香农采样定理,奈奎斯特采样定理)是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E.T.Whittaker(1915年发表的统计理论),克劳德·香农与HarryNyquist都对它作出了重要贡献。另外,V.A.Kotelnikov也对这个定理做了重要贡献。
采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样定理指出,如果信号是带限的,并且采样频率高于信号带宽的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。
带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是有限的。采样定理是指,如果信号带宽小于采样频率(即奈奎斯特频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。
什么是香农采样定理
香农采样定理:香农采样定理又称采样定理,奈奎斯特采样定理,只要采样频率大于或等于有效信号最高频率的两倍,采样值就可以包含原始信号的所有信息,被采样的信号就可以不失真地还原成原始信号。
定理解释
1、采样:指的是理想采样, 即直接记录信号在某时间点的精确取值,所以采样定理只涉及到了从连续信号到离散信号的理想采样过程, 而未涉及到对测量值的量化过程。
2、采样频率:指单位时间内的采样点数, 采样是一种周期性的操作, 非周期性采样不在采样定理的范围之内。
3、带宽:是一个信号的一种频域参数,常指信号所占据的频带宽度,简单的说是信号的能量集中的频率范围。至于多少百分比的信号能量集中的范围视为带宽,要根据不同的实际需要了。判断的标准就是,在某个频率范围内的信号频谱已经基本提供了我们需要的信息,那么这个频率范围外的信号频谱就变得可有可无。这个频率范围就是带宽。
根据采样定理,最低采样频率必须是信号频率的两倍。反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变的最大频率叫做恩奎斯特频率,它是采样频率的一半。如果信号中包含频率高于奈奎斯特频率的成分,信号将在直流和恩奎斯特频率之间畸变。
哪位讲一下,采样频率,采样点的关系!
采样频率是对模拟信号进行A/D采样时,每秒钟对信号采样的点数。
比如,对1秒时间段上的模版拟连续信号采样,权采样频率为1M,就是在时间轴上每隔1us采样一个点,那么就是一共采样1M个点。
采样点数就是上面所说的,根据采样时间和采样频率就能确定采样点数。信号频率和采样频率之间需要满足奈奎斯特采样定理。
即采样频率至少是信号频率的2倍,才可能从采样后的数字信号,恢复为原来的模拟信号而保证信号原始信息不丢失。
扩展资料:
1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。
1948年信息论的创始人C.E.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。
采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。
如果认为本文对您有所帮助请赞助本站