求人工智能(AI)科普视频

发布时间: 2023-02-27 17:00:52 来源: 励志妙语 栏目: 经典文章 点击: 102

什么是ai?人工智能(Artificial,Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智...

求人工智能(AI)科普视频

什么是ai?

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。
“人工智能”(Artificial Intelligence)简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能研究如何用计算机去模拟、延伸和扩展人的智能;如何把计算机用得更聪明;如何设计和建造具有高智能水平的计算机应用系统;如何设计和制造更聪明的计算机以及智能水平更高的智能计算机等。人工智能是计算机科学的一个分支,人工智能是计算机科学技术的前沿科技领域。人工智能与计算机软件有密切的关系。一方面,各种人工智能应用系统都要用计算机软件去实现,另一方面,许多聪明的计算机软件也应用了人工智能的理论方法和技术。
 魔兽争霸等游戏地图,AI地图是可以由电脑加入机器人进行对战的地图,比如常见的Dota、真三等
AI是指人工智能,电脑有了人工智能,就可以做一些人类常做的事情,魔兽中也一样。你下的这个补丁是高人工智能的电脑,就是说电脑的AI非常高,电脑可以打gg,回程,骚扰 甚至围杀,还能和你简单的对话。这就是AI。电脑分为简单,中等,疯狂的。
AI是智能版本的地图,你如果找不到好的对手,或者说你是初学者。就可以选择AI版的地图跟电脑玩。能玩得过的话就可以去VS或者浩方玩了。水平已经算入门了
在角色扮演游戏中,如果需要用到多个角色,而真正的真人玩家就一个的话,其他的玩家用电脑来代替,这就是ai
常见的比如dota ai版 信长之野望 ai 等等~

平时总要聊点AI吧!人工智能入门书籍、视频、课程推荐

大家好,我是聚灵阵主。其实开着一篇我自己也很忐忑,毕竟阵主不算是深度的从业人员,但是我自己目前的专业也是跨在和人工智能的交叉学科上面。这篇文章准备搜集一些学习人工智能所需要的资源网站等,即使为身为小白的我自己准备的,也给大家参考一下。同时若是文章有什么纰漏疏忽错误之类的,欢迎大家指正!

之前被赶鸭子上架的时候就发现,学习AI少不了数学的基础,我自己上本科的时候学过高等数学,线性代数和数理统计,但是很多早就已经还给老师了。为了重新快速学会这些知识,我是重新搞了一个考研的课程视频来看,大家可别小看考研课程,虽然这些考研名师不是厉害的数学家或者学者,但是对于短时突击各大知识点,这些课程真的非常有用。

我是看的张宇的考研数学基础班,资源的话是校内PT上下载的,大家如果没有ipv6的话,也可以在考研论坛上找找类似的课程。像B站上面也有相关的课程视频,大家可以看看。

其他的参考书我就买了一套教材,用到的时候就当工具书,题目也做了一圈,感觉还是很有用的,至于知乎上推荐的那些歪果仁的教材,我也没用过,不知道会不会更好。

吴恩达是人工智能领域的超级大牛,他讲的课程也是被各路大神分享。大家如果有空的时候就学习一下这个课程的话,也是很有用的。

林轩田的这个课程是我的同事推荐给我的,说是入门AI很有用的课程。除了机器学习基石,我看林轩田老师还有一个机器学习技法的课程,大家也可以一起看看。这个我已经下载好了,准备有空看。另外这个课程还有一个配套的教材。

这个是一个计算神经科学的课程。我们学习人工智能,很多时候也要从真正的人类的智能中寻找参考点,这个计算神经科学也是同事推荐给我的,我看了之后觉得讲得也挺好的,大家感兴趣可以去看看。

作为一个编程小白,我是觉得编程最难了,试图学习过Python,但是至今也没有学会,等有空了准备跟着Python教程再学一学。

其他的内容中,阵主准备在进修一下自己的matlab,然后再根据自己的专业找一些学习资料。

好了,本文的分享就是这些。希望大家如果想学习一些人工智能的相关知识的话,还是可以看看的。最后阵主想说的是,现在的确是一个信息爆炸的时代,给你的教材参考书永远比你需要的多,与其在资料中眼花缭乱,不如拿准资料之后就安心学习吧!

人工智能的原理是什么

人工智能的原理,简单的形容就是:

人工智能=数学计算。

机器的智能程度,取决于“算法”。最初,人们发现用电路的开和关,可以表示1和0。那么很多个电路组织在一起,不同的排列变化,就可以表示很多的事情,比如颜色、形状、字母。再加上逻辑元件(三极管),就形成了“输入(按开关按钮)——计算(电流通过线路)——输出(灯亮了)”

这种模式。

想象家里的双控开关。

为了实现更复杂的计算,最终变成了,“大规模集成电路”——芯片。

电路逻辑层层嵌套,层层封装之后,我们改变电流状态的方法,就变成了“编写程序语言”。程序员就是干这个的。

程序员让电脑怎么执行,它就怎么执行,整个流程都是被程序固定死的。

所以,要让电脑执行某项任务,程序员必须首先完全弄清楚任务的流程。

就拿联控电梯举例:

别小看这电梯,也挺“智能”呢。考虑一下它需要做哪些判断:上下方向、是否满员、高峰时段、停止时间是否足够、单双楼层等等,需要提前想好所有的可能性,否则就要出bug。

某种程度上说,是程序员控制了这个世界。可总是这样事必躬亲,程序员太累了,你看他们加班都熬红了眼睛。

于是就想:能不能让电脑自己学习,遇到问题自己解决呢?而我们只需要告诉它一套学习方法。

大家还记得1997年的时候,IBM用专门设计的计算机,下赢了国际象棋冠军。其实,它的办法很笨——暴力计算,术语叫“穷举”(实际上,为了节省算力,IBM人工替它修剪去了很多不必要的计算,比如那些明显的蠢棋,并针对卡斯帕罗夫的风格做了优化)。计算机把每一步棋的每一种下法全部算清楚,然后对比人类的比赛棋谱,找出最优解。

一句话:大力出奇迹!

但是到了围棋这里,没法再这样穷举了。力量再大,终有极限。围棋的可能性走法,远超宇宙中全部原子之和(已知),即使用目前最牛逼的超算,也要算几万年。在量子计算机成熟之前,电子计算机几无可能。

所以,程序员给阿尔法狗多加了一层算法:

A、先计算:哪里需要计算,哪里需要忽略。

B、然后,有针对性地计算。

——本质上,还是计算。哪有什么“感知”!

在A步,它该如何判断“哪里需要计算”呢?

这就是“人工智能”的核心问题了:“学习”的过程。

仔细想一下,人类是怎样学习的?

人类的所有认知,都来源于对观察到的现象进行总结,并根据总结的规律,预测未来。

当你见过一只四条腿、短毛、个子中等、嘴巴长、汪汪叫的动物,名之为狗,你就会把以后见到的所有类似物体,归为狗类。

不过,机器的学习方式,和人类有着质的不同:

人通过观察少数特征,就能推及多数未知。举一隅而反三隅。

机器必须观察好多好多条狗,才能知道跑来的这条,是不是狗。

这么笨的机器,能指望它来统治人类吗。

它就是仗着算力蛮干而已!力气活。

具体来讲,它“学习”的算法,术语叫“神经网络”(比较唬人)。

(特征提取器,总结对象的特征,然后把特征放进一个池子里整合,全连接神经网络输出最终结论)

它需要两个前提条件:

1、吃进大量的数据来试错,逐渐调整自己的准确度;

2、神经网络层数越多,计算越准确(有极限),需要的算力也越大。

所以,神经网络这种方法,虽然多年前就有了(那时还叫做“感知机”)。但是受限于数据量和计算力,没有发展起来。

神经网络听起来比感知机不知道高端到哪里去了!这再次告诉我们起一个好听的名字对于研(zhuang)究(bi)有多重要!

现在,这两个条件都已具备——大数据和云计算。谁拥有数据,谁才有可能做AI。

目前AI常见的应用领域:

图像识别(安防识别、指纹、美颜、图片搜索、医疗图像诊断),用的是“卷积神经网络(CNN)”,主要提取空间维度的特征,来识别图像。

自然语言处理(人机对话、翻译),用的是”循环神经网络(RNN)“,主要提取时间维度的特征。因为说话是有前后顺序的,单词出现的时间决定了语义。

神经网络算法的设计水平,决定了它对现实的刻画能力。顶级大牛吴恩达就曾经设计过高达100多层的卷积层(层数过多容易出现过拟合问题)。

当我们深入理解了计算的涵义:有明确的数学规律。那么,

这个世界是是有量子(随机)特征的,就决定了计算机的理论局限性。——事实上,计算机连真正的随机数都产生不了。

——机器仍然是笨笨的。

更多神佑深度的人工智能知识,想要了解,可以私信询问。

人工智能的工作原理是:计算机会通过传感器(或人工输入的方式)来收集关于某个情景的事实。计算机将此信息与已存储的信息进行比较,以确定它的含义。计算机会根据收集来的信息计算各种可能的动作,然后预测哪种动作的效果最好。计算机只能解决程序允许解决的问题,不具备一般意义上的分析能力。
简介:
人工智能(Artificial Intelligence),英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,但没有一个统一的定义。 人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。
科学介绍:
1、实际应用
机器视觉:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。
2、学科范畴
人工智能是一门边沿学科,属于自然科学和社会科学的交叉。
3、涉及学科
哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论。
4、研究范畴
自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法。
5、意识和人工智能
人工智能就其本质而言,是对人的思维的信息过程的模拟。
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。
3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

什么是人工智能?

“AI”是什么?

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能包括五大核心技术:
1.计算机视觉:计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。
3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。
4.机器人技术:近年来,随着算法等核心技术提升,机器人取得重要突破。例如无人机、家务机器人、医疗机器人等。
5.生物识别技术:生物识别可融合计算机、光学、声学、生物传感器、生物统计学,利用人体固有的生体特性如指纹、人脸、虹膜、静脉、声音、步态等进行个人身份鉴定,最初运用于司法鉴定。
AI也就是人工智能,它是一种基于机械或者程序对人的思维信息和思考意识进行模拟的应用系统。
AI是人工智能(Artificial Intelligence)的英文缩写,人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
本文标题: 求人工智能(AI)科普视频
本文地址: http://www.lzmy123.com/jingdianwenzhang/288240.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    请问我这些仙人掌死了没如何看待狐狸晨曦对令狐冲的评价
    Top