为什么许多与时间相关的物理量用1/e这一临界点来定义

发布时间: 2023-11-01 00:01:55 来源: 励志妙语 栏目: 经典文章 点击: 105

你能和我详细的解释一下什么是电场,什么是磁场吗?电场是电荷及变化磁场周围空间里存在的一种特殊物质。电场这种物质与通常的实物不同,...

为什么许多与时间相关的物理量用1/e这一临界点来定义

你能和我详细的解释一下什么是电场,什么是磁场吗?

电场是电荷及变化磁场周围空间里存在的一种特殊物质。电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的,电场具有通常物质所具有的力和能量等客观属性。电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷做功(这说明电场具有能量)。
存在于带电体周围的传递电荷之间相互作用的特殊媒介物质.电荷间的作用总是通过电场进行的。
电场:只要电荷存在它周围就存在电场,电场是客观存在的,它具有力和能的特性
基本性质:
1.对放入其中的电荷有力的作用。
2.能使放入电场中的导体产生静电感应现象 。
电场强度是描述电场力特性的物理量
其定义是:放入电场中某一点的电荷受到的电场力F跟它的电量q的比值叫做该点的电场强度,表示该处电场的强弱。在电场中某一点确定了,则该点场强的大小与方向就是一个定值,与放入的检验电荷无关,即使不放入检验电荷,该处的场强大小方向仍不变。检验电荷q充当“测量工具”的作用。某点的E取决于电场本身,(即场源及这点的位置,)与q检的正负,电何量q检和受到的电场力F无关。电场强度是矢量,电场强度的合成按照矢量的合成法则(平行四边形法则和三角形法则)。电场强度和电场力是两个概念,电场强度的大小与方向跟放入的检验电荷无关,而电场力的大小与方向则跟放入的检验电荷有关。
等量同种电荷形成的电场:
(1)两种电荷的连线上;不管是等量同种正电荷还是负电荷,中点O处场强始终为零
(2)两电荷连线的中垂线上;不管是等量同种正电荷还是负电荷,从中点O处沿中垂面(中垂线)到无穷远处,场强先变大后变小。
(3)关于O点对称的两点场强大小相等,方向相反,电势相等。
等量异种电荷形成的电场:
(1)两电荷的连线上,各点的电场强度方向从正电荷指向负电荷,沿电场线方向场强先变小后变大,从正电荷到负电荷电势逐渐降低。
(2)两电荷连线的中垂线上场强方向相同,且与中垂线垂直,由中点O点到无穷远处,场强一直变小,各点电势相等。
(3)在中垂线上关于中点O对称的两点场强等大同向
静电场
静电场是由静止电荷激发的电场。该静止电荷被称为场源电荷,简称为源电荷。静电场的电场线起始于正电荷且无穷远,终止于无穷远或负电荷。静电场的电场线方向和场源电荷有着密切的关系。当场源电荷为正电荷时,该电场的电场线成发散状;当场源电荷为负电荷时,该电场的电场线成收敛状。其电场力移动电荷做功具有与路径无关的特点。用电势差描述电场的能的性质,或用等势面形象地说明电场的电势的分布。
静电场中的电场强度公式为:E=F/q。单位为牛[顿]每库伦,符号为N/C。它的另一个单位是伏特每米(V/m)。两个单位之间的关系是1N/C=1V/m。
感应电场
变化磁场激发的电场叫感应电场或涡旋电场。
感应电场的电场线是闭合的,没有起点、终点。闭合的电场线包括变化的磁场。
电场强度
描述某点电场特性的物理量,符号是E,E是矢量。电场强度简称场强,定义为放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,但场强不与q成反比,只是由比值来反映和测定。
场强的方向与正检验电荷的受力方向相同。场强的定义是根据电场对电荷有作用力的特点得出的。对电荷激发的静电场和变化磁场激发的涡旋电场都适用。场强的单位是牛/库或伏/米,两个单位名称不同,但大小一样。场强数值上等于单位电荷在该点受的电场力,场强的方向与正电荷受力方向相同。
电场的特性是对电荷有作用力,这种作用力就是电场力,正电荷受力方向与电场方向相同,负电荷受力方向与电场方向相反。
电场是一种物质,具有能量,场强大处电场的能量大。
已知电场强度可判定电场对电荷的作用力,电介质(绝缘体)的电击穿与场强大小有关。
点电荷的电场强度由点电荷决定,与试探电荷无关.
真空中点电荷场强公式:E=k×q/r^2
匀强电场场强公式:E=U/d
任何电场中都适用的定义式:E=F/q
介质中点电荷的场强:k×q/r^2;
注:匀强电场。在匀强电场中,场强大小相等,方向相同,匀强电场的电场线是一组疏密相同的平行线.
在匀强电场中,有E=U/d(只适用于匀强电场),U为电势差,单位:伏特/米。电荷在此电场中受到的力为恒力,带电粒子在匀强电场中作匀变速运动。而此电场的等势面与电场线相垂直。
电场线
为形象地描述场强的分布,在电场中人为地画出一些有方向的曲线,曲线上一
点的切线方向表示该点电场强度的方向。电场线的疏密程度与该处场强大小成正比。
电场是一种物质,电场线是人为画出的便于形象描述电场分布的辅助工具,并不是客观存在的。
在没有电荷的空间,电场线具有不相交(包括相切)、不中断的特点。
电场线具有下列特性:
(1)切线方向表示该点场强的方向,也是正电荷的受力方向.
(2)静电场电场线有始有终:始于“+”,终止于“-”或无穷远,从正电荷出发到负电荷终止,或从正电荷出发到无穷远处终止,或者从无穷远处出发到负电荷终止.
(3)疏密表示该处电场的强弱,也表示该处场强的大小.越密,则E越强
(4)匀强电场的电场线平行且等间距直线表示.(平行板电容器间的电场,边缘除外)
(5)没有画出电场线的地方不一定没有电场.
(6)静电场的电场线不相交,不终断,不成闭合曲线。
(7)电场线不是电荷运动的轨迹.也不能确定电荷的速度方向。除非三个条件同时满足:①电场线为直线,②v0=0或v0方向与E方向平行。③仅受电场力作用
磁场是一种看不见、摸不着的特殊物质,磁场不是由原子或分子组成的,但磁场是客观存在的。磁场具有波粒的辐射特性。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的,所以两磁体不用接触就能发生作用。电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或电场的变化而产生的。用现代物理的观点来考察,物质中能够形成电荷的终极成分只有电子(带单位负电荷)和质子(带单位正电荷) ,因此负电荷就是带有过剩电子的点物体,正电荷就是带有过剩质子的点物体。运动电荷产生磁场的真正场源是运动电子或运动质子所产生的磁场。例如电流所产生的磁场就是在导线中运动的电子 所产生的磁场。
永磁体——磁铁的性质
永磁体具有磁性(magnetism),能吸引铁、钴、镍等物质;
永磁体具有磁极(magnetic pole),分磁北极N 和磁南极S ;
磁极之间存在相互作用,同性相斥,异性相吸;
磁极不能单独存在.
最早出现的几副磁场绘图之一,绘者为勒内·笛卡尔,1644年。
虽然很早以前,人类就已知道磁石和其奥妙的磁性,最早出现的几个学术性论述之一,是由法国学者皮埃·德马立克(Pierre de Maricourt)于公元1269 年写成[notes 3]。德马立克仔细标明了铁针在块型磁石附近各个位置的定向,从这些记号,又描绘出很多条磁场线。他发现这些磁场线相会于磁石的相反两端位置,就好像地球的经线相会于南极与北极。因此,他称这两位置为磁极[2]。几乎三个世纪后,威廉·吉尔伯特主张地球本身就是一个大磁石,其两个磁极分别位于南极与北极。出版于1600 年,吉尔伯特的巨著《论磁石》(De Magnete)开创磁学为一门正统科学学术领域。
于1824年,西莫恩·泊松发展出一种物理模型,比较能够描述磁场。泊松认为磁性是由磁荷产生的,同类磁荷相排斥,异类磁荷相吸引。他的模型完全类比现代静电模型;磁荷产生磁场,就如同电荷产生电场一般。这理论甚至能够正确地预测储存于磁场的能量。
尽管泊松模型有其成功之处,这模型也有两点严重瑕疵。第一,磁荷并不存在。将磁铁切为两半,并不会造成两个分离的磁极,所得到的两个分离的磁铁,每一个都有自己的指南极和指北极。第二,这模型不能解释电场与磁场之间的奇异关系。
于1820年,一系列的革命性发现,促使开启了现代磁学理论。首先,丹麦物理学家汉斯·奥斯特于7月发现载流导线的电流会施加作用力于磁针,使磁针偏转指向。稍后,于9月,在这新闻抵达法国科学院仅仅一周之后,安德烈·玛丽·安培成功地做实验展示出,假若所载电流的流向相同,则两条平行的载流导线会互相吸引;否则,假若流向相反,则会互相排斥。紧接着,法国物理学家让·巴蒂斯特·毕奥和菲利克斯·沙伐于10月共同发表了毕奥-萨伐尔定律;这定律能够正确地计算出在载流导线四周的磁场。
1825年,安培又发表了安培定律。这定律也能够描述载流导线产生的磁场。更重要的,这定律帮助建立整个电磁理论的基础。于1831年,麦可·法拉第证实,随着时间演进而变化的磁场会生成电场。这实验结果展示出电与磁之间更密切的关系。
从1861年到1865之间,詹姆斯·麦克斯韦将经典电学和磁学杂乱无章的方程加以整合,发展成功麦克斯韦方程组。最先发表于他的1861年论文《论物理力线》,这方程组能够解释经典电学和磁学的各种现象。在论文里,他提出了“分子涡流模型”,并成功地将安培定律加以延伸,增加入了一个有关于位移电流的项目,称为“麦克斯韦修正项目”。由于分子涡包具有弹性,这模型可以描述电磁波的物理行为。因此,麦克斯韦推导出电磁波方程。他又计算出电磁波的传播速度,发现这数值与光速非常接近。警觉的麦克斯韦立刻断定光波就是一种电磁波。后来,于1887年,海因里希·鲁道夫·赫兹做实验证明了这事实。麦克斯韦统一了电学、磁学、光学理论。
虽然,有了极具功能的麦克斯韦方程组,经典电动力学基本上已经完备,在理论方面,二十世纪带来了更多的改良与延伸。阿尔伯特·爱因斯坦,于1905年,在他的论文里表明,电场和磁场是处于不同参考系的观察者所观察到的同样现象(帮助爱因斯坦发展出狭义相对论的思想实验,关于其详尽细节,请参阅移动中的磁铁与导体问题)。后来,电动力学又与量子力学合并为量子电动力学。
1820年丹麦物理学家奥斯特发现在通电的导体周围存在着磁场,从而知道了电和磁相互依存的关系。由导体中电流所产生的磁场的极性和电流的流动方向有关,它服从右手法则。
由于经典物理中至今还拒绝使用基本粒子的概念来研究磁场问题,致使电磁学和电动力学都将产生磁场的原因定义为点电荷的定向运动,并将磁铁的成因解释为磁畴。现代物理证明,任何物质的终极结构组成都是电子(带单位负电荷),质子(带单位正电荷)和中子(对外显示电中性)。点电荷就是含有过剩电子(带单位负电荷)或质子(带单位正电荷)的物质点,因此电流产生磁场的原因只能归结为运动电子产生磁场。
一个静止的电子具有静止电子质量和单位负电荷,因此对外产生引力和单位负电场力作用。当外力对静止电子加速并使之运动时,该外力不但要为电子的整体运动提供动能,还要为运动电荷所产生的磁场提供磁能。可见,磁场是外力通过能量转换的方式在运动电子内注入的磁能物质。电流产生磁场或带负电的点电荷产生磁场都是大量运动电子产生磁场的宏观表现。
同样道理,由一个运动的带正电的点电荷所产生的磁场,是其中过剩的质子从外力所获取的磁能物质的宏观体现。但其磁能物质又分别依附于其中带有电荷的夸克。
传递运动电荷或电流之间相互作用的物理场,由运动电荷或电流产生,同时对产生场中其它运动电荷或电流发生力的作用。磁场是物质的一种形态。
磁铁与磁铁之间,通过各自产生的磁场,互相施加作用力和力矩于对方。运动中的电荷会产生磁场。磁性物质产生的磁场可以用电荷运动模型来解释。
电场是由电荷产生的。电场与磁场有密切的关系;有时磁场会生成电场,有时电场会生成磁场。麦克斯韦方程组可以描述电场、磁场、产生这些矢量场的电流和电荷,这些物理量之间的详细关系。根据狭义相对论,电场和磁场是电磁场的两面。设定两个参考系A和B,相对于参考系A,参考系B以有限速度移动。从参考系A观察为静止电荷产生的纯电场,在参考系B观察则成为移动中的电荷所产生的电场和磁场。
与电场相仿,磁场是在一定空间区域内连续分布的向量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地表示。然而,作为一个矢量场,磁场的性质与电场颇为不同。
运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线簇,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。
在量子力学里,科学家认为,纯磁场(和纯电场)是虚光子所造成的效应。以标准模型的术语来表达,光子是所有电磁作用的显现所依赖的媒介。在低场能量状况,其中的差别是可以忽略的。
望采纳谢谢

谁帮我把初中物理各种公式,和各个字母代表的意思帮我整理完整一下 是《上海科学技术出版社》的教科书

♥ 物理中考复习---物理公式
♥: 速度公式:v=s/t
公式变形: s=vt t=s/v
平均速度: v=s总/t总
例:已知前一半路程的速度V1,后一半路程的速度V2,
全程的平均速度为:(设路程为2S,则)
V=S总/t总=(S1+S2)/(t1+t2)
=2S/(t1+t2)
=2S/(S/V1+S/V2)
=2V1V2/(V1+V2)
例:已知前一半时间的速度V1 ,后一半时间的速 度为V2全程的平均速度为:(设总时间为2t ,则)
V=S总/t总=(S1+S2)/(t1+t2)
=(V1t+V2t)/2t
=(V1+V2)/2
♥: 重力与质量的关系:G=mg
公式变形: m=G/

♥: 合力公式: F = F1 + F2 (同一直线同方向二力的合力计算)
F =F1 - F2 (同一直线反方向二力的合力计算) 如果F1>F2则合力F的方向与F1的方向相同。
物理量 单位
ρ——密度 kg/m3 g/cm3
m——质量 kg g
V——体积 m3 cm3
♥: 密度公式:ρ=m/v
公式变形: m=ρv v=m/ρ
混合物的密度:ρ=m总/v总
例:取质量相等的两种已知密度ρ1,ρ2的物质混
合,混合物的密度为:(设质量为m,则)
ρ=M总/V总=(M1+M2)/(V1+V2)
=2M/(M/ρ1+M/ρ2)
=2ρ1ρ2/(ρ1+ρ2)
例:取体积相等的两种已知密度ρ1 ,ρ2的物质混
物理量 单位
F浮:浮力 N
G :物体的重力 N
F:物体浸没液体中时弹簧测力计的读数 N
合,混合物的密度为:(设体积为V ,则)
ρ=M总/V总=(M1+M2)/( V1+V2)
=(ρ1V+ρ2V)/2V
=(ρ1+ρ2)/2
物理量 单位
F浮:浮力 N
ρ液:液体的密度 kg/m3
V排:物体排开的液体的体积 m3
g=9.8N/kg,粗略计算时取 g=10N/kg

♥: 浮力公式:
① 称量法: F浮=G – F

② 阿基米德原理:F浮=G排=m排gV排

物理量 单位
F浮:浮力 N
G物:物体的重力 N

③二力的平衡: F浮=G物 (漂浮或悬浮)
物理量 单位
p——压强 Pa;N/m2
F——压力 N
S——受力面积 m2

④浮力的实质: F浮=F向上―F向下
♥:压强公式:P=F/S
变形公式: F=PS S=F/P
♥:液体压强公式:p=ρgh
提示:①固体产生的压力压强的计算:
先压力F=G,后压强P=F/S.
②液体产生的压力压强的计算:
物理量 单位
F1——动力 N
L1——动力臂 m
F2——阻力 N
L2——阻力臂 m
先压强P=ρgh,后压力P=F/S
③. 柱状液体(F=G)产生压力压强的计
算,两种思路都可以。
♥: 杠杆的平衡条件:F1L1=F2L2 或写成:
F1/F2=L2/L1
注:L1,L2的单位相同即可
♥:斜面:FL=GH
♥:轮轴:F1R=F2r
♥:滑轮组: F=G/n F=(G+G动)/n
S =nh VF=nVG
对于定滑轮而言:F = G s = h VF=VG

对于动滑轮而言:F = G/2 F=(G+G动)/2
s =2 h VF=2VG

提示:克服重力做功或重力做功:W=Gh
克服摩擦力做功或摩擦力做功:W=fS
物理量 单位
W:动力做的功 J
F:动力 N
S:物体在力的方向上通过的距离 m

♥:机械功公式:W =F s

变形公式: F=W/S
S=W/F
物理量 单位
P:功率 W kw
W:功 J kwh
t:时间 S h
F:力 N
V:速度 m/s

♥:功率公式:P=W/t P=FV
变形公式:W=Pt F=P/V
t=W/P V=P/F
物理量 单位
η——机械效率
W有——有用功 J
W总——总功 J

♥:机械效率η=W有/W总
滑轮组机械效率η=W有/W总
=GH/(GH+GOH)=G/(G+GO)
=1/(1+G0/G)
斜面的机械效率η=W有/W总
提示:
当物体吸热后,终温t高于初温t0,△t = t – t0
当物体放热后,终温t2低于初温t1。△t = t0- t
=GH/FL=G/nF L=nH
♥:热量计算公式:
物体吸热或放热
Q = c m △t
Q吸 =cm(t-t0)
物理量 单位
Q放:放出的热量 J
m: 燃料的质量 kg
V: 燃料的体积 m3
q: 燃料的热值 J/kg J/m3
Q放 =cm(t0-t)
Q吸=Q放 不计散热损失 (保证 △t >0)
♥: 燃料燃烧时放热:
Q放= mq Q放=Vq
炉子效率: η=Q有效利用/Q完全燃烧
热机效率: η=W有/Q完全燃烧
提示:电流等于1s内通过导体横截面的电荷量。
♥:电流定义式:
I=Q/t
Q=ne
同一性:I、U、R三量必须对应同一导体(同一段电路);
同时性:I、U、R三量对应的是同一时刻。
♥:欧姆定律:
I=U/R
U=IR
R=U/I
物理量 单位
W:电功 J
U:电压 V
I:电流 A
t:通电时间 s
提示:
(1) I、U、t 必须对同一段电路、同一时刻而言。
(2) 式中各量必须采用国际单位;
1度=1 kWh = 3.6×10 6 J。
(3)普遍适用公式,对任何类型用电器都适用;
♥:电功公式:
W =UIt=Pt
电热公式:
Q=I2Rt
WW=UIt结合U=I R→W= I 2Rt
W= UIt 结合I=U/R→W=U2t/R
如果电能全部转化为内能,则:Q=W PW=PQ。
物理量 单位 物理量 单位
P:电功率 W Kw I:电流 A
W:电功 J kWh U:电压 V
t:通电时间 s h
♥:电功率公式:
PW=W/t=IU (所有电路)
热功率:
PQ=Q/t=I2R (所有电路)
P=W/t=IU结合I=U/R
P=U2/R (只能用于纯电阻电路)
♥:串联电路的特点:
电流: I=I1=I2
电压: U=U1+U2
电阻: R=R1+R2
分压规律: U1/U2=R1/R2 (U=IR )
电功之比: W1:W2=R2:R1 (W=U2t/R )
功率之比: P1:P2=R1:R2 (P=I2R )
计算总功 公式 W=W1+W 2=UIt=Pt
W=I2Rt=U2t/R (纯电阻电路)
计算总功率 公式 P= P1+P2=W/t=UI
P=I2R=U2/R (纯电阻电路)
♥:并联电路的特点:
电流: I=I1+I2
电压: U=U1=U2
电阻: 1/R=1/R1+1/R2
分流规律: I1:I2=R2:R1 (I=U/R )
电功之比: W1:W2=R1:R2 (W=I2Rt )
功率之比: P1:P2=R2:R1 (P= U2/R )
计算总功: 公式 W= W1+W2=UIt=Pt
W=I2Rt=U3t/R(纯电阻电路)
计算总功率: 公式 P=P1+P2=W/t=UI
P=I2R=U2/R (纯电阻电路)
物理量(单位) 公式 备注 公式的变形
速度V(m/S) v= S:路程/t:时间

重力G (N) G=mg m:质量 g:9.8N/kg或者10N/kg
密度ρ (kg/m3) ρ=m/V m:质量 V:体积
合力F合 (N) 方向相同:F合=F1+F2
方向相反:F合=F1—F2 方向相反时,F1>F2
浮力F浮
(N) F浮=G物—G视 G视:物体在液体的重力

浮力F浮
(N) F浮=G物 此公式只适用
物体漂浮或悬浮
浮力F浮
(N) F浮=G排=m排g=ρ液gV排 G排:排开液体的重力
m排:排开液体的质量
ρ液:液体的密度
V排:排开液体的体积
(即浸入液体中的体积)
杠杆的平衡条件 F1L1= F2L2 F1:动力 L1:动力臂
F2:阻力 L2:阻力臂
定滑轮 F=G物
S=h F:绳子自由端受到的拉力
G物:物体的重力
S:绳子自由端移动的距离
h:物体升高的距离
动滑轮 F= (G物+G轮)
S=2 h G物:物体的重力
G轮:动滑轮的重力
滑轮组 F= (G物+G轮)
S=n h n:通过动滑轮绳子的段数
机械功W
(J) W=Fs F:力
s:在力的方向上移动的距离
有用功W有
总功W总 W有=G物h
W总=Fs 适用滑轮组竖直放置时
机械效率 η= ×100%

功率P
(w) P=
W:功
t:时间
压强p
(Pa) P=
F:压力
S:受力面积
液体压强p
(Pa) P=ρgh ρ:液体的密度
h:深度(从液面到所求点
的竖直距离)
热量Q
(J) Q=cm△t c:物质的比热容 m:质量
△t:温度的变化值
燃料燃烧放出
的热量Q(J) Q=mq m:质量
q:热值
常用的物理公式与重要知识点
一.物理公式

单位) 公式 备注 公式的变形

串联电路
电流I(A) I=I1=I2=…… 电流处处相等
串联电路
电压U(V) U=U1+U2+…… 串联电路起
分压作用
串联电路
电阻R(Ω) R=R1+R2+……
并联电路
电流I(A) I=I1+I2+…… 干路电流等于各
支路电流之和(分流)
并联电路
电压U(V) U=U1=U2=……
并联电路
电阻R(Ω) = + +……

欧姆定律 I=
电路中的电流与电压
成正比,与电阻成反比
电流定义式 I=
Q:电荷量(库仑)
t:时间(S)
电功W
(J) W=UIt=Pt U:电压 I:电流
t:时间 P:电功率
电功率 P=UI=I2R=U2/R U:电压 I:电流
R:电阻
电磁波波速与波
长、频率的关系 C=λν C:

物理量 单位 公式
名称 符号 名称 符号
质量 m 千克 kg m=pv
温度 t 摄氏度 °C
速度 v 米/秒 m/s v=s/t
密度 p 千克/米³ kg/m³ p=m/v
力(重力) F 牛顿(牛) N G=mg
压强 P 帕斯卡(帕) Pa P=F/S
功 W 焦耳(焦) J W=Fs
功率 P 瓦特(瓦) w P=W/t
电流 I 安培(安) A I=U/R
电压 U 伏特(伏) V U=IR
电阻 R 欧姆(欧) R=U/I
电功 W 焦耳(焦) J W=UIt
电功率 P 瓦特(瓦) w P=W/t=UI
热量 Q 焦耳(焦) J Q=cm(t-t°)
比热 c 焦/(千克°C) J/(kg°C)
真空中光速 3×108米/秒
g 9.8牛顿/千克
15°C空气中声速 340米/秒

初中物理公式汇编
【力 学 部 分】
1、速度:V=S/t
2、重力:G=mg
3、密度:ρ=m/V
4、压强:p=F/S
5、液体压强:p=ρgh
6、浮力:
(1)、F浮=F’-F (压力差)
(2)、F浮=G-F (视重力)
(3)、F浮=G (漂浮、悬浮)
(4)、阿基米德原理:F浮=G排=ρ液gV排
7、杠杆平衡条件:F1 L1=F2 L2
8、理想斜面:F/G=h/L
9、理想滑轮:F=G/n
10、实际滑轮:F=(G+G动)/ n (竖直方向)
11、功:W=FS=Gh (把物体举高)
12、功率:P=W/t=FV
13、功的原理:W手=W机
14、实际机械:W总=W有+W额外
15、机械效率: η=W有/W总
16、滑轮组效率:
(1)、η=G/ nF(竖直方向)
(2)、η=G/(G+G动) (竖直方向不计摩擦)
(3)、η=f / nF (水平方向)
【热 学 部 分】
1、吸热:Q吸=Cm(t-t0)=CmΔt
2、放热:Q放=Cm(t0-t)=CmΔt
3、热值:q=Q/m
4、炉子和热机的效率: η=Q有效利用/Q燃料
5、热平衡方程:Q放=Q吸
6、热力学温度:T=t+273K
【电 学 部 分】
1、电流强度:I=Q电量/t
2、电阻:R=ρL/S
3、欧姆定律:I=U/R
4、焦耳定律:
(1)、Q=I2Rt普适公式)
(2)、Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式)
5、串联电路:
(1)、I=I1=I2
(2)、U=U1+U2
(3)、R=R1+R2
(4)、U1/U2=R1/R2 (分压公式)
(5)、P1/P2=R1/R2
6、并联电路:
(1)、I=I1+I2
(2)、U=U1=U2
(3)、1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)]
(4)、I1/I2=R2/R1(分流公式)
(5)、P1/P2=R2/R1
7定值电阻:
(1)、I1/I2=U1/U2
(2)、P1/P2=I12/I22
(3)、P1/P2=U12/U22
8电功:
(1)、W=UIt=Pt=UQ (普适公式)
(2)、W=I2Rt=U2t/R (纯电阻公式)
9电功率:
(1)、P=W/t=UI (普适公式)
(2)、P=I2R=U2/R (纯电阻公式)
【常 用 物 理 量】
1、光速:C=3×108m/s (真空中)
2、声速:V=340m/s (15℃)
3、人耳区分回声:≥0.1s
4、重力加速度:g=9.8N/kg≈10N/kg
5、标准大气压值:
760毫米水银柱高=1.01×105Pa
6、水的密度:ρ=1.0×103kg/m3
7、水的凝固点:0℃
8、水的沸点:100℃
9、水的比热容:
C=4.2×103J/(kg•℃)
10、元电荷:e=1.6×10-19C
11、一节干电池电压:1.5V
12、一节铅蓄电池电压:2V
13、对于人体的安全电压:≤36V(不高于36V)
14、动力电路的电压:380V
15、家庭电路电压:220V
16、单位换算:
(1)、1m/s=3.6km/h
(2)、1g/cm3 =103kg/m3
(3)、1kw•h=3.6×106J
重力和质量关系:G=mg m=G/g
g=9.8牛/千克。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。
同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同;
方向相反:合力F=F1-F2,合力方向与大的力方向相同。
密度ρ:某种物质单位体积的质量,密度是物质的一种特性。
公式: m=ρV 国际单位:千克/米3 ,常用单位:克/厘米3,
压力F:垂直作用在物体表面上的力,公式: F=PS S:受力面积,两物体接触的公共部分;单位:米2
公式:P=ρgh h:单位:米; ρ:千克/米3; g=9.8牛/千克
浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差
4.当物体漂浮时:F浮=G物 且 ρ物<ρ液 当物体悬浮时:F浮=G物 且 ρ物=ρ液
当物体上浮时:F浮>G物 且 ρ物<ρ液 当物体下沉时:F浮<G物 且 ρ物>ρ液
杠杆平衡条件:F1l1=F2l2

谁能告诉我时间的起点是什么?物质的起源是什么?物质和意识的关系真的是第一性和第二性就能说明白的吗?

不知道人类到底为什么活着?人类到底承载了神的什么使命?
其实楼上说的答案我并不支持.
无论是学习还是好奇,我们都应该为了他这种学习的精神值得学习,只有不停的学习,探索,人类才有进步.
1.大爆炸真的是时间的起点吗?抑或宇宙在大爆炸之前就已经存在?如果在10年前提出这样的问题,那简直是对宇宙学大逆不道了;绝大多数宇宙学家会认为,思考大爆炸以前的时间,就像打听北极以北的地方在哪里一样。然而,理论物理学的发展,尤其是弦论的出现,大大改变了宇宙学家的视角,大爆炸前的宇宙已成了宇宙学的研究前沿。

探索大爆炸之前发生过什么的新思潮,其实只是数千年来的理性钟摆的最新一次摆动。几乎在每一种文明中,终极起源的问题都会让哲学家和神学家忙个没完没了。它所关怀的问题让人应接不暇,其中著名的一个出现在Paul Gaugin(高更)1897年的名画中: 我们从哪里来?我们是什么?我们往哪里去?这幅作品描绘了生老病死的轮回:每个人的起源、身份与宿命,而这份对个人的关怀,直接连系着宇宙的命运。人类可以寻根,追溯自身的血统,穿越世世代代,回到我们的动物祖先,再溯及生命的早期形式和初始生命,然后回到原生宇宙中合成的元素,再到更早期空间中的飘渺能量。我们的谱系树是否可以这样一直无休止地延伸下去呢?抑或它会终止于某处?宇宙是否也像人类一样,并非永恒的?
古希腊人曾就时间的起源有过激烈的争论。亚里斯多德主张无不能生有,而站在了时间没有起点的阵营。如果宇宙不能无中生有,那它过去必然是一直存在的。基于这些理论,时间必定是朝着过去和未来两端无限延伸。而基督教神学家则倾向于相反的观点。奥古斯丁坚决主张,神存在于空间和时间之外,而且创造了时空和整个世界。有人问道:神在创造这个世界之前在做什么?奥古斯丁答道:时间本身就是神创造的产物之一,所以根本就没有之前可言!
爱因斯坦的广义相对论,引导当代宇宙学家得出了几乎一样的结论。广义相对论认为,空间和时间是柔软可塑的实体。在大尺度上,空间本质上是动态的,会随时间而膨胀或收缩;它承载物质的方式,就像海浪承载浮物一样。1920年代,天文学家观测到遥远的星系正在彼此远离,从而证实宇宙正在膨胀。接着,物理学家Stephen Hawking(霍金)与Roger Penrose(彭若斯)在1960年代证明,时间不可能一直回溯下去。如果你把宇宙历史一直往回倒退,所有的星系终会挤到一个无穷小的点(称为即奇点)上,这与它们掉进黑洞的意思差不多。每个星系或其前身都被压缩到零尺寸,而密度、温度和时空曲率等物理量则变成无穷大。奇点就是宇宙万物的起点,超过这一界限,我们的宇宙谱系树就无法再往前延伸了。
宇宙是均匀的?

这个无法避免的奇点,给宇宙学家带来了令人不安的严重问题。特别是,奇点与宇宙在大尺度上所展示的高度均匀性及各向同性似乎有矛盾。由于宇宙在大尺度上到处都相同,因此在相距遥远的区域之间,必以某种方式传递信息,以协调彼此的性质。然而,这与旧的宇宙学规范相抵触。
具体来说,不妨想一下从宇宙微波背景辐射释放后,这137亿年来发生的事情:由于宇宙的膨胀,星系间距离增大了1000倍,而可观测宇宙的半径,则增大了10万倍之多(由于光速超过宇宙膨胀速度)。我们今天看到的宇宙,有很大一部分是我们在137亿年所看不到的。的确,在宇宙历史上,现在那些来自最遥远星系的光,还是第一次到达银河系。
尽管如此,银河系与那些遥远星系的性质,竟然基本上是一样的。这就好比你参加一个聚会,发现自己穿的衣服与十多位好友的一模一样。如果只有两人衣着相同,用巧合还可以解释得过去。可是如果十几个人衣着都相同,那八成是他们事先约好了。在宇宙学中,这个数字不是十几个,而是数万个--这是全天域微波背景中的天区数量,它们彼此独立,但统计上却完全等同。
一种可能性是,这些空间区域诞生伊始便被赋予了相同的性质,换言之,均匀性只不过是个巧合。然而,物理学家想出了两种更自然的途径来摆脱僵局:让早期宇宙要么比标准宇宙小得多,要么老得多。任一条件(或者两者一起),都有可能实现各个空间区域之间的相互联系。
当前最流行的是第一种途径。假设宇宙在早期历史中曾经历一次快速膨胀,称为暴胀。在暴胀之前,星系或其前身全都紧密地挤在一起,因此可以容易地协调它们的性质。在暴胀阶段,由于光速赶不上暴胀的速度,它们便彼此失去了联系。暴胀结束后,膨胀速度开始放慢,因此各星系间又逐渐恢复了联系。
物理学家将暴胀所迸出的能量,归因于大爆炸之后约10*-35秒一个新的量子场暴胀子中所储存的势能。势能与静质能和动能不同,它可以产生引力排斥效应。通常的物质引力会减慢宇宙膨胀,但暴胀子却会加速宇宙膨胀。暴胀理论于1981年问世,至今已经解释了众多的精确观测结果[参见本刊1984年第9期Alan H·Guth与Paul J·Steinhardt所著《爆胀宇宙》和2004年第4期的专题报道《打开宇宙的四把钥匙》]。不过,还有一系列潜在的理论问题没有解决,首当其冲的是,暴胀场子究竟是什么?以及如此巨大的初始势能从何而来?
第二种途径喜晃�怂���蔷褪潜芸�娴恪H绻�奔洳皇鞘加诖蟊�ǎ�绻�谀壳暗呐蛘涂�贾�埃�钪婢鸵丫�嬖诤艹ひ欢问奔淞耍�敲次镏示陀谐湓5氖奔浒炎约旱姆植及才诺帽冉掀交�R虼搜芯咳嗽币芽�贾匦录焓拥汲銎娴愕耐频脊�獭?
推导过程中假设相对论始终有效,看来是大有问题的。在接近一般认定的奇点时,量子效应必定越来越重要,甚至起到主导的作用。正统的相对论没有考虑到这类效应,因此,认定奇点不可避免,无疑是过份相信了相对论。要弄清真正发生的情况,物理学家必须把相对论纳入到量子引力理论中。这个任务让爱因斯坦以后的物理学家伤透脑筋,直到1980年代中期,进展还几乎等于零。

弦论的革命

如今,有两个好方案出现了。第一个叫圈量子引力,它完整保留了爱因斯坦理论的精髓,只是改变了欲符合量子力学条件的程序[参见本刊2004年第3期Lee Smolin所著《量子化时空》一文]。过去几年中,圈量子引力的研究者取得了长足的进展,获得了非常深刻的认识。然而,或许对传统理论的革命不够深入,因而无法解决引力量子化的根本问题。类似的问题在1934年也出现过,当时费米(Enrico Fermi)提出了他的弱核力有效理论,令粒子物理学家大伤脑筋。所有建立量子费米理论的努力,全都悲惨地一无所获。结果真正需要的,并不是新的枝巧,而是在1960年代后期,格拉肖(Sheldon L·Glashow)、温伯格(Steven Weinberg)和萨拉姆(Abdus Salam)的电弱理论所带来的根本翻修。
第二个就是弦论,我认为比较有前途。弦论对爱因斯坦理论进行了真正的革命性改造,本文将着重讨论;尽管圈量子引力的支持者声称,他们也得出了许多相同的结论。
弦论萌生于1968年,那是我用于描述核子(质子和中子)及其作用力的模型。尽管在问世之初引起不小的轰动,这一模型最终还是失败了,让位给了量子色动力学。后者用更基本的夸克来描述核子,而弦论就被舍弃了。夸克被禁锢在质子或中子内,彼此就好似用橡皮弦把它们拴在一起。现在回顾起来,最初的弦论其实已经抓住了核子世界中弦的要素。沉寂一段时间之后,弦论又以结合广义相对论和量子理论的姿态,东山再起了。
弦论的核心概念,是基本粒子并非点状物,而是无限细的一维实体,也就是弦。在基本粒子庞大的家族中,每种粒子都有自己的特性,这反映在一根弦有多种可能的振动模式上。这样一个看似简单的理论,如何能够描述粒子及其作用力的复杂世界呢?答案可以在我们所说的量子弦魔术中找到。一旦把量子力学套用到振动的弦(与小提琴弦没两样,只不过其上的振动以光速传播)上面,崭新的性质便出现了。所有这些性质,对于粒子物理学和宇宙学具有深刻的启示。
首先,量子弦的尺度有限。如果不考虑量子效应,一根小提琴弦可以一分为二,再一分为二,这样一直分割下去,直至最后变成一些无质量的点状粒子。但是分割到一定程度,海森堡的测不准原理就会介入,防止最轻的弦被分割到10*-34米以下。这个不能再分割的长度量子,用ls表示,是弦论引入的一个全新的自然常数,与光速C和普朗克常数h并列。它在弦论的几乎所有方面都起着决定性的作用,为各种物理量设定了上下限,防止它们变成零或无穷大。
其次,就算没有质量的量子弦,也可以有角动量。在经典物理学中,角动量是绕轴旋转的物体所具有的一种性质。计算角动量的公式是速度、质量以及物体到转轴距离三者之乘积,因此无质量的物体不可能具有角动量。但在微观世界中,由于存在量子涨落,情况有所不同。一根微小的弦即使没有任何质量,也可以获得不超过2h的角动量。这一性质令物理学家喜出望外,因为它同所有已知的基本作用力载体(如传播电磁力的光子或者传播引子的引力子)的性质不谋而合。回顾历史,正是角动量让物理学家注意到弦论中含有量子引力。
第三,量子弦要求在通常的3维之外,还存在额外的空间维度。经典的小提琴弦,不管时空的性质如何,都可以振动,而量子弦就挑剔多了。要使描述量子弦振动的方程能够自洽,时空必须是高度弯曲的(这与观测结果相矛盾),否则它就应该含有6个额外的空间维。
第四,物理常数(出现在物理方程中并决定自然界性质,例如牛顿常数与库仑常数)不再具有任意给定的固定值。它们在弦论中以场的形式出现,就如电磁场一样,可以动态地调整它们的数值。在不同的宇宙时期或者在相隔遥远的空间区域,这些场可能取不同的值;即使到了今天,这些常数可能还会有微小幅度的变化。只要观测到任何这类变化,可就是弦论的一大进展了[相关文章即将在本刊登载]。
这其中的所谓膨胀子场是整个弦论的关键,它决定了所有作用力的总强度。弦论学家对膨胀子特别感兴趣,因为它的量值可以重新解释为一个额外空间维的尺度,从而给出一个11维时空。

系紧松头

量子弦使物理学家最终认识到,自然界存在新的重要对称,称为对偶性(duality),它改变了我们对尺度极小的微观世界的直觉。我曾提到一种对偶性:通常情况下弦越短便越轻,但如果我们想要把弦的长度缩短到基本长度ls以下,那么弦反而会重新变重。
另一种对称称为T对偶性,它指出,额外的维度都是等价的,而与其尺度无关。之所以会出现这种对称,是因为弦的运动方式可以比点状粒子更复杂。试考虑一个圆柱状空间上的一根闭合弦(称为圈),此空间的圆形横截面代表一个有限的额外维。除了振动之外,该弦还能整个地绕圆柱转动,或者缠绕于圆柱一圈或数圈,就象橡皮筋绕在纸筒上一样[见40页图文]。
这两种状态下,弦的能量消耗与圆柱尺度有关。卷绕的能量与圆柱的半径成正比。圆柱越大,弦就拉伸得越厉害,因此其卷绕所含的能量也就越多。但是,当整个弦绕圆柱运动时,其能量就与圆柱半径成反比了。圆柱越大,波长就越大(相当于频率越低),因而能量就越小。如果用一个大圆柱取代小圆柱,那么两种运动状态就可以互换角色。先前由圆周产生的能量现在改由卷绕产生,而先前由卷绕产生的能量则通过圆周运动产生。外部观测者看到的只是能量的大小而不是其起源。对外部观测者而言,圆柱半径无论大小在物理学上都是等价的。
T对偶性通常用圆周状空间来描述(这种空间的一个维度即圆周是有限的),但它的一个变种适用于通常的3维空间,这种空间的每一维都可以无限地延伸下去。在谈论无限空间的扩展时务必谨慎。无限空间总的大小是不会变化的;它永远都是无限大。但这种空间内所包容的诸如星系之类的天体却可以彼此相距越来越远,从这个意义上说,无限空间仍然能够膨胀。关键的变量不是整个空间的大小,而是它的尺度系数,即衡量星系间距离变化的数值,它表现为天文学家所观测到的星系红移。根据T对偶性,尺度系数较小的宇宙等价于尺度系数较大的宇宙。爱因斯坦的方程里不存在这类对称性;弦论实现了相对论和量子论的统一,此种对称性也就自然地脱颖而出,膨胀子则在其中起了关键的作用。
多年来弦理论家曾认为T对偶性仅适用于闭弦而非开弦(开弦的端头是松开的,因此这种弦不能卷绕。)1995年,美国加州大学圣巴巴拉分校的joseph Polchinski意识到,如果在半径出现由大到小或由小到大的转换时,弦端点处的条件也发生相应的变化,那么T对偶性就适用于开弦。此前物理学家所假定的边界条件是弦的端点不受任何力的作用,因此可以自由地甩来甩去。而T对偶性则要求这些条件变成所谓Dirichlet边界条件,即端点处于固定状态。
任何给定的弦可以兼有两类边界条件。例如,电子所对应的弦其端点或许可以在10个空间维的3维中自由运动,但在其余7维中却是固定的。这3个维构成了一个名为Dirichlet膜(D-膜)的子空间。1996年,加州大学伯克利分校的Petr Horava和美国普林斯顿高级研究所的Edward Witten提出,我们的宇宙就位于这样一种膜上。电子和其他粒子只能在一部分维中运动,这就说明了我们为何无法领略空间的整个10维风光。
参考资料:http://www.zijie.net/?content/view/200_2.html

2.物质的起源:
物质到底是如何产生出来的呢?既然,宇宙中原本存在着的只是空间,莫非物质是从空间中产生出来的?这个最不可思议的问题我们在上一章 中其实便 已经解决了。我们在那里已论证出宇宙中所有的空间单位(即空子)皆因自身客观存在的本质所致而必须抛射出自己内部的一些成份,这抛射出来的东西便与所经过的静空子的中间体结合成为宇宙中最小的游离个体。我们称之为“游空子”。那么,这一些原本就占据着宇宙所有空间,但绝大部分时间却跑出原始空间单位,在宇宙中四处游荡的小东西难道不正是物质的全部吗?而这充满着整个宇宙的游空子们难免会相互碰撞、相互结合,于是便形成了较大的、我们目前所知道的种种所谓的“基本粒子”(包括反粒子);于是也便形成了那尘埃、物体、星球、生物体等等。

3.第一性的质和第二性的质,Primary and secondary qualities

把物体的性质分别为基本的、第一性的质和派生的、第二性的质的物性理论。流行于17世纪的机械唯物主义自然观。它发端于古代希腊的原子唯物论,集中体现于R.波义耳和J.洛克关于第一性的质和第二性的质的学说。

在古代希腊罗马时期, 以德谟克利特、 伊壁鸠鲁(见伊壁鸠鲁和伊壁鸠鲁学派)、卢克莱修为代表的原子唯物论者认为,作为万物本原的原子只具有形状、大小的特性《伊壁鸠鲁另加上“重量”的性质),物体的其他特性则是原子组合为物时,由于有数量和排列次序的差异而派生出来的,至于颜色、滋味等则是不同形状和大小的原子在人的感官上的表现。这种物性理论是第一性的质和第二性的质学说的早期形式。

到17世纪,以G.伽利略、波义耳、I.牛顿为代表的近代自然科学和以R.笛卡尔、P.伽森狄、T.霍布斯为代表的机械唯物主义哲学,继承和发展了古代的原子论。他们按照近代机械力学的观点,把物体的广延看成物质的本质,用物质微粒的机械性能和空间组合形式去说明自然物的一切特性。波义耳在《从微粒哲学看性质和形式的来源》一书中用这种机械论的自然观去说明物体的各种物理、化学特性,并首次提出了第一性的质和第二性的质的概念。他认为一切物体都是分子的组合,而分子则是广延的、可分的、不可入的实体。他把广延、不可入性、运动、静止、组织等称为“第一性的偶性”,它们是物体本身具有的原始性质;颜色、声音等属于“第二性的偶性”,是物质分子由于形状、体积、运动以及空间组合形式不同而作用在感官上的不同表现。

洛克接受了波义耳的 “微粒哲学” 和两种性质的概念,把它发展为一种相当完整的机械唯物主义自然观。他把物体的结实(即不可入性)、广延(形状、体积)、可动以及物质微粒组合为物时的数量和组织结构称为物体的第一性的质,把由此而派生的使他物发生变化的能力以及在我们感官上产生颜色、声音、气味、滋味和冷热、硬软等感觉的能力称为物体的第二性的质。第一性的质是物体在任何时间、任何情况下所固有的,第二性的质则决定于不同形状和体积的物质微粒组合为物时的空间组合形式和数量关系。因此,第一性的质是物体的基本性质,是决定物体其他特性的“实在本质”,而第二性的质则是被它所决定并依附于它的次级特性。从认识论看,物体的两种性质都是作用于我们的感官,从而产生相应的感觉和观念的能力,但第一性的质与其所产生的感觉完全相似,第二性的质则与其所产生的感觉完全不相似。两种性质学说不仅集中体现了洛克的机械唯物主义自然观,而且为洛克的经验主义认识论提供了物理方面的说明。在洛克的哲学体系中,两种性质学说占有重要的地位。
http://www.yuedu.org/books/book-200712195857Qe310.htm
时间是没有起点的,但对于每个人都有自己的时间起点.而物质的起源是在物质破灭时,万物都一样.
呵呵,你怎么问了些好奇怪的问题,不要那么悲观呀,人来到世间本来就是不容易的,而要面对来自各方面的压力.漂泊在人生的海洋中的小舟是那么的渺小,而它只能选择拼搏,勇敢地去驾御一个个巨浪才可以生存下去,
记住,末低头,加油!!!!
如果你是或将来是学习这个方面的人,那么你保持这份好奇心会激励你的学习,如果你不是,那么为什么一定要问那些全体人类思考了几个世纪都没有答案的问题?

如果你觉得不知道你的那些问题你就觉得生活没保障、活着没意义那就太杞人忧天了
时间没有起点也没有终点,人活着是为了生存,为了社会和科学的进步,为了后世的繁衍,人类文明的继续。从个人角度讲是为了成就自己,是为了快乐的度过一生,是为了寻找人间的欢乐,是为了感受人间的亲情和友情,是为了报答父母生你养你的恩德,是为了离开这个世界的时候嘴角还可以挂着笑容
本文标题: 为什么许多与时间相关的物理量用1/e这一临界点来定义
本文地址: http://www.lzmy123.com/jingdianwenzhang/341394.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    为什么世家的后人不为祖先一定要汉人被蒙古人女真人屠杀的罪行赎罪孔子写过什么书
    Top