光的速度是怎么测出来的光从离开太阳表面算起,需大约8分17秒才能到达地球。答:从古希腊时期,科学家们就开始研究光速。大多数的古希...
光的速度是怎么测出来的
光从离开太阳表面算起,需大约8分17秒才能到达地球。答:从古希腊时期,科学家们就开始研究光速。大多数的古希腊天文学家相信,在所有事物中,光速是无穷快的。但是他们没有方法来验证这个似乎有道理的猜想。所以直到16世纪早期之前,人们普遍认为这样的猜想是正确的。而伽利略的出现改变了这一切。
朱斯托·苏斯泰曼斯所作的伽利略肖像伽利略试图通过使用带挡板的灯笼测量光速。他让助手站在很远的地方,并在特定时间打开挡板,而伽利略将记录从助手那到他所在位置的光的传播时间。只不过他的结论是光速实在是太快了,无法通过实验测量。(事实上,根据我们现在对光速的了解,我们可以断言,如果伽利略和他的助手相距大约一英里,那么光从伽利略到他的助手这只需要大约五微秒(五百万分之一秒)的光。这太快了,无法用当时的技术来衡量。)
第一次正确测量光速是在1676年由一个叫做奥勒·罗默的人完成的。当时罗默正在观察木星的卫星木卫一,它位于伽利略卫星的最深处。正如地球上的观察者所见,当木卫一移动到木星的阴影中时,它会突然消失,而当它移动到木星的阴影之外(回到阳光中)时,它会重新出现。罗默对预测木卫一从木星阴影中出现的时间感兴趣。他的目标是利用这些观测结果更准确地确定木卫一的轨道周期;而并没有试图确定光速。
罗默注意到,随着地球越来越靠近木星,木卫一从阴影出现的时间变得越来越短,反之亦然。他意识到通过观测和计算出的木卫一出现时间之间存在差异,而这可以用光的速度是有限的来解释。由于在罗默的观测过程中,地球正在远离木星,所以从木卫一反射回来的光到达地球的时间会稍长一些,这将影响观察到木卫一从木星阴影中出现的确切时间。
在罗默论文里,他比较木卫一轨道周期的两个时间间隔:一个是地球在朝向木星运行时的木卫一轨道周期(有向弧FG的方向),另一个是地球背向木星运行时的木卫一轨道周期(有向弧LK的方向)。基于这些观察,罗默计算出光穿越地球公转直径的距离大约需要22分钟。将该值与地球半长轴(轨道半径)的早期测量值相结合,给出了大约每秒210,000公里的光速。这大约比光速的现代值低30%,但是考虑到它的古老性、测量方法和17世纪行星轨道精确尺寸的不确定性,这个值非常接近每秒299,792.458公里的现代值。
十六世纪初,伽利略是第一个尝试测量光速的人。伽利略和一个助手各自站在不同的山顶上,他们之间有一段已知的距离,他们的计划是让伽利略打开灯的挡光板,然后让他的助手看到伽利略发出的光的同时也打开他手里灯的挡光板。
伽利略利用山顶之间的距离并用脉搏作为计时器,计划测量光速。他和他的助手用不同的距离尝试了这个方法,但是不管他们相距多远,他都无法测量光传播的时间。伽利略得出结论,光速太快,用这种方法是无法测量的。他是正确的。我们现在非常精确地知道光速,如果伽利略和他的助手在相距1.5千米的山顶上,光从一个人传播到另一个人需要花费0.0000054秒的时间。所以伽利略无法用他的脉搏来测量光速是可以理解的!
1676年,丹麦天文学家罗迈第一次提出了有效的光速测量方法——利用木星卫星的成蚀。惠更斯根据罗迈提出的数据和地球的半径,第一次计算出了光的传播速度约为200000千米/秒;1728年,英国天文学家布拉德雷得出光速为310000千米/秒;1849年,法国人菲索测得光速是315000千米/ 秒;1850年,法国物理学家傅科测出光速是298000千米/秒;1874年,考尔纽测得光速为299990千米/秒。接下来以光速测定为终身目标的是迈克耳孙
迈克耳孙1873年毕业于美国海军学院,并留校教物理和化学。大约在5年后,开始进行光速的测量工作,随后游学欧洲,在德国和法国学习光学。回国后离开海军成为凯斯学院物理学教授。迈克耳孙因为精密光学仪器和和借助这些仪器进行的光谱学和度量学的研究工作作出的贡献获得1907年的诺贝尔物理学奖。
迈克耳孙自己设计了旋转镜和干涉仪,用以测定微小的长度、折射率和光波波长。1879年,他得到的光速为299910±5千米/秒;1882年,他得到的光速为299853±6千米/秒。这个结果被公认为国际标准,沿用了40年。迈克耳孙最后一次测量光速在加利福尼亚两座相差35千米的山上进行的,光速测量精确度最后达到了299798±4千米/秒。他就在这次测量过程中中风,于1931年去世。
在激光得以广泛应用以后,开始利用激光测量光速。其方法是测出激光的频率和波长,应用c=λν计算出光速c,目前这种方法测出的光速是最精确的。根据 1975年第15届国际计量大会决议,把真空中光速值定为c=299 792 458米/秒。在通常应用多取c=3×10^8米/秒。
2 关于电的速度: 光的传播速度就是光子的移动速度,而电的传播速度是指电场的传播速度(也有人说是电信号的传播速度,其实是一样的),不是电子的移动速度。导线中的电子每秒能移动几米(宏观速度)就已经是很高的速度了。
电场的传播速度非常快,在真空中,这个速度的大小约为接近于光速
。“电”的传播过程大致是这样的:电路接通以前,金属导线中虽然各处都有自由电子,但导线内并无电场,整个导线处于静电平衡状态,自由电子只做无规则的热运动而没有定向运动,当然导线中也没有电流。当电路一接通,电场就会把场源变化的信息,以大约光速的速度传播出去,使电路各处的导线中迅速建立起电场,电场推动当地的自由电子做漂移运动,形成电流。那种认为开关接通后,自由电子从电源出发,以漂移速度定向运动,到达电灯之后,灯才能亮,完全是一种误解
光速是怎么被测量出来的?
光速是怎么被测量出来的?光速测量:
布莱德雷的光行差法
1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为:C=299930千米/秒
这一数值与实际值比较接近.
以上仅是利用天文学的现象和观察数值对光速的测定,而在实验室内限于当时的条件,测定光速尚不能实现.
旋转齿轮法
用实验方法测定光速首先是在1849年由斐索实验.他用定期遮断光线的方法(旋转齿轮法)进行自动记录.实验示意图如下.从光源s发出的光经会聚透镜L1射到半镀银的镜面A,由此反射后在齿轮W的齿a和a’之间的空隙内会聚,再经透镜L2和L3而达到反射镜M,然后再反射回来.又通过半镀镜A由L4集聚后射入观察者的眼睛E.如使齿轮转动,那么在光达到M镜后再反射回来时所经过的时间△t内,齿轮将转过一个角度.如果这时a与a’之间的空隙为齿a(或a’)所占据,则反射回来的光将被遮断,因而观察者将看不到光.但如齿轮转到这样一个角度,使由M镜反射回来的光从另一齿间空隙通过,那么观察者会重新看到光,当齿轮转动得更快,反射光又被另一个齿遮断时,光又消失.这样,当齿轮转速由零而逐渐加快时,在E处将看到闪光.由齿轮转速v、齿数n与齿轮和M的间距L可推得光速c=4nvL.
在斐索所做的实验中,当具有720齿的齿轮,一秒钟内转动12.67次时,光将首次被挡住而消失,空隙与轮齿交替所需时间为
在这一时间内,光所经过的光程为2×8633米,所以光速
在傅科的实验中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.
微波谐振腔法
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10^-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
激光测速法
1970年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=vλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10^-9,比以前已有最精密的实验方法提高精度约100倍.
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.
根据1975年第十五届国际计量大会的决议,现代真空中光速的准确值是:
c=299792.458±0.001km/s
定义:
光速是指光波或电磁波在真空或介质中的传播速度。真空中的光速是目前所发现的自然界物体运动的最大速度。它与观测者相对于光源的运动速度无关,即相对于光源静止和运动的惯性系中测到的光速是相同的。物体的质量将随着速度的增大而增大,当物体的速度接近光速时,它的质量将趋于无穷大,所以有质量的物体达到光速是不可能的。只有静止质量为零的光子,才始终以光速运动着。光速与任何速度叠加,得到的仍然是光速。速度的合成不遵从经典力学的法则,而遵从相对论的速度合成法则。
真空中的光速(speed of light/ velocity of light)是自然界物体运动的最大速度。光速与观测者相对于光源的运动速度无关。物体的质量将随着速度的增大而增大,当物体的速度接近光速时,它的动质量将趋于无穷大,所以质量不为0的物体达到光速是不可能的。只有静质量为零的光子,才始终以光速运动着。光速与任何速度叠加,得到的仍然是光速。真空中的光速是一个重要的物理常量。
光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.
1.微波谐振腔法
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
2.激光测速法(大学课本)
1970年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍.
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.
根据1975年第十五届国际计量大会的决议,现代真空中光速的最可靠值是:
c=299792.458±0.001km/s
接近光速时的速度合成
接近光速情况下,笛卡尔坐标系不再适用。同样测量光线离开自己的速度,一个快速追光的人与一个静止的人会测得相同的速度(光速)。这与日常生活中对速度的概念有异。两车以50km/h的速度迎面飞驰,司机会感觉对方的车以50 + 50 = 100km/h行驶,即与自己静止而对方以100km/h迎面驶来的情况无异。但当速度接近光速时,实验证明简单加法计算速度不再奏效。当两飞船以90%光速的速度(对第三者来说)迎面飞行时,船上的人不会感觉对方的飞船以90%c+90%c=180%c光速速度迎面飞来,而只是以稍低于99.5%的光速速度行驶。结果可从爱因斯坦计算速度的算式得出:
v和w是对第三者来说飞船的速度,u是感受的速度,c是光速。
不同介质中的光速
真空中的光速 真空中的光速是一个重要的物理常量,国际公认值为c=299,792,458米/秒。17世纪前人们以为光速为无限大,意大利物理学家G.伽利略曾对此提出怀疑,并试图通过实验来检验,但因过于粗糙而未获成功。1676年,丹麦天文学家O.C.罗默利用木星卫星的星蚀时间变化证实光是以有限速度传播的。1727年,英国天文学家J.布拉得雷利用恒星光行差现象估算出光速值为c=303000千米/秒。
1849年,法国物理学家A.H.L.菲佐用旋转齿轮法首次在地面实验室中成功地进行了光速测量,最早的结果为c=315000千米/秒。1862年,法国实验物理学家J.-B.-L.傅科根据D.F.J.阿拉戈的设想用旋转镜法测得光速为c=(298000±500)千米/秒。19世纪中叶J.C.麦克斯韦建立了电磁场理论,他根据电磁波动方程曾指出,电磁波在真空中的传播速度等于静电单位电量与电磁单位电量的比值,只要在实验上分别用这两种单位测量同一电量(或电流),就可算出电磁波的波速。1856年,R.科尔劳施和W.韦伯完成了有关测量,麦克斯韦根据他们的数据计算出电磁波在真空中的波速值为3.1074×105千米/秒,此值与菲佐的结果十分接近,这对人们确认光是电磁波起过很大作用。
1926年,美国物理学家A.A.迈克耳孙改进了傅科的实验,测得c=(299796±4)千米/秒,他于1929年在真空中重做了此实验,测得c=299774千米/秒。后来有人用光开关(克尔盒)代替齿轮转动以改进菲佐的实验,其精度比旋转镜法提高了两个数量级。1952年,英国实验物理学家K.D.费罗姆用微波干涉仪法测量光速,得c=(299792.50±0.10)千米/秒。此值于1957年被推荐为国际推荐值使用,直至1973年。
1972年,美国的K.M.埃文森等人直接测量激光频率ν和真空中的波长λ,按公式c=νλ算得c=(299792458±1.2)米/秒。1975年第15届国际计量大会确认上述光速值作为国际推荐值使用。1983年17届国际计量大会通过了米的新定义,在这定义中光速c=299792458米/秒为规定值,而长度单位米由这个规定值定义。既然真空中的光速已成为定义值,以后就不需对光速进行任何测量了。
介质中的光速 不同介质中有不同的光速值。1850年菲佐用齿轮法测定了光在水中的速度,证明水中光速小于空气中的光速。几乎在同时,傅科用旋转镜法也测量了水中的光速(3/4c),得到了同样结论。这一实验结果与光的波粒二象性相一致而与牛顿的微粒说相矛盾(解释光的折射定律时),这对光的波动本性的确立在历史上曾起过重要作用。1851年,菲佐用干涉法测量了运动介质中的光速,证实了A.-J.菲涅耳的曳引公式。 [玻璃中光速2/3c]
光在水中的速度:2.25×10^8m/s
光在玻璃中的速度:2.0×10^8m/s
光在冰中的速度:2.30×10^8m/s
光在空气中的速度:3.0×10^8m/s
光在酒精中的速度:2.2×10^8m/s
上述理论只在19世纪70年代基本准确,在爱因斯坦<<广义相对论>>中,光速是这样阐述的:物体运动接近光速时,时间变得缓慢,当物体运动等于光速时,时间静止,当物体运动超过光速时,时间倒流.这三个推断是19世纪70年代初中期国际天文机构观察探测日食时得以证实,而目前得以证实人类超过光速的机器是俄罗斯时间机器,它可以使当地时间倒退一秒,而耗电量是整个莫斯科市三年的用电量.
E=mc^2推导
第一步:要讨论能量随质量变化,先要从量纲得知思路:
能量量纲[E]=[M]([L]^2)([T]^(-2)),即能量量纲等于质量量纲和长度量纲的平方以及时间量纲的负二次方三者乘积。
我们需要把能量对于质量的函数形式化简到最简,那么就要求能量函数中除了质量,最好只有一个其它的变量。
把([L]^2)([T]^(-2))化简,可以得到只有一个量纲-速度[V_]的形式:
[V_]*[V_]。
也就是[E]=[M][V_]*[V_]
可见我们要讨论质能关系,最简单的途径是从速度v_下手。
----------------------------------------------------
第二步:先要考虑能量的变化
与能量的变化有关的有各种能量形式的转化,其中直接和质量有关的只有做功。
那么先来考虑做功对于能量变化的影响。
当外力F_(后面加_表示矢量,不加表示标量)作用在静止质量为m0的质点上时,每产生ds_(位移s_的微分)的位移,物体能量增加
dE=F_*ds_(*表示点乘)。
考虑最简化的 外力与位移方向相同的情况,上式变成
dE=Fds
----------------------------------------
第三步:怎样把力做功和速度v变化联系起来呢?也就是说怎样来通过力的作用效果来得出速度的变化呢?
我们知道力对物体的冲量等于物体动量的增量。那么,通过动量定理,力和能量就联系起来了:
F_dt=dP_=mdv_
----------------------------------------
第四步:上式中显然还要参考m质量这个变量,而我们不想让质量的加入把我们力和速度的关系复杂化。我们想找到一种办法约掉m,这样就能得到纯粹的速度和力的关系。
参考dE=Fds和F_dt=dP_,我们知道,v_=ds_/dt
那么可以得到
dE=v_*dP_
如果考虑最简单的形式:当速度改变和动量改变方向相同:
dE=vdP
---------------------------------
第五步:把上式化成能量和质量以及速度三者的关系式(因为我们最初就是要讨论这个形式):
dE=vd(mv)----因为dP=d(mv)
---------------------------------
第六步:把上式按照微分乘法分解
dE=v^2dm+mvdv
这个式子说明:能量的增量含有质量因速度增加而增加dm产生的能量增量和单纯速度增加产生的能量增量2个部分。(这个观点非常重要,在相对论之前,人们虽然在理论物理推导中认识到质量增加也会产生能量增量,但是都习惯性认为质量不会随运动速度增加而变化,也就是误以为dm恒定为0,这是经典物理学的最大错误之一。)
---------------------------------
第七步:我们不知道质量随速度增加产生的增量dm是怎样的,现在要研究它到底如何随速度增加(也就是质量增量dm和速度增量dv之间的直接关系):
根据洛仑兹变换推导出的静止质量和运动质量公式:
m=m0[1-(v^2/c^2)]^(-1/2)
化简成整数次幂形式:
m^2=(m0^2)[1-(v^2/c^2)]
化成没有分母而且m和m0分别处于等号两侧的形式(这样就是得到运动质量m对于速度变化和静止质量的纯粹的函数形式):
(m^2)(c^2-v^2)=(m0^2)c^2
用上式对速度v求导得到dm/dv(之所以要这样做,就是要找到质量增量dm和速度增量dv之间最直接的关系,我们这一步的根本目的就是这个):
d[(m^2)(c²-v²)]/dv=d[(m0²)c²]/dv(注意式子等号右边是常数的求导,结果为0)
即
[d(m²)/dv](c²-v²)+m²[d(c²-v²)/dv]=0
即
[m(dm/dv)+m(dm/dv)](c²-v²)+(m²)[0-2v]=0
即
2m(dm/dv)(c²-v²)-2vm²=0
约掉公因式2m(肯定不是0,呵呵,运动质量为0?没听说过)
得到:
(dm/dv)(c²-V²)-mv=0
即
(dm/dv)(c^2-V^2)=mv
由于dv不等于0(我们研究的就是非静止的情况,运动系速度对于静止系的增量当然不为0)
(c^2-v^2)dm=mvdv
这就是我们最终得到的dm和dv的直接关系。
--------------------------------------------
第八步:有了dm的函数,代回到我们第六步的能量增量式
dE=v^2dm+mvdv
=v^2dm+(c^2-v^2)dm
=c^2dm
这就是质能关系式的微分形式,它说明:质量的增量与能量的增量成正比,而且比例系数是常数c^2。
------------------------------------------
最后一步:推论出物体从静止到运动速度为v的过程中,总的能量增量:
对上一步的结论进行积分,积分区间取质量从静止质量m0到运动质量m,得到
∫dE=∫[m0~m]c^2dm
即
E=mc^2-m0c^2
这就是 物体从静止到运动速度为v的过程中,总的能量增量。
其中
E0=m0c^2称为物体静止时候的静止能量。
Ev=mc^2称为物体运动时候的总动能(运动总能量)。
总结:对于任何已知运动质量为m的物体,可以用E=mc^2直接计算出它的运动动能。
关于光速
光在水中的速度:2.25×10^8m/s
光在玻璃中的速度:2.0×10^8m/s
光在冰中的速度:2.30×10^8m/s
光在空气中的速度:3.0×10^8m/s
光在酒精中的速度:2.2×10^8m/s
同学们知道这个速度相对什么说的吧?是介质,而不关心介质的整体,是以什么速度运动。就是说如果测量系以一定速度运动,则光速是测量系速度加光在介质中的速度,至少低速时近似如此,这一点维护相对论的也不否认。
以声音实验为例:空气对地面静止,第1次我们不动测得我们发出的声音1秒钟前进了300米;第二次我们1秒钟匀速后退1米,测得声音距我们301米,得到结论:两次声音相对地面速度不变,相对我们,第一次300米/秒;第2次301米/秒。
换做光实验,同样结果。我们用玻璃介质再做一次,同样结果,我们再做一个我们不动,让玻璃带着光匀速运动的实验,会发现光对玻璃依然是光速,因为它的传递条件没有任何改变,而对我们,光速改变了,是静止光速+玻璃速度。
要么承认光速可变,要么承认声速也是不变的。
相对论在什么情况下有可能可用呢?
爱因斯坦说:任何光线在“静止的”坐标系中都是以确定的速度c运动着,不管这道光线是由静止的还是运动的物体发射出来的。”
大学物理中光速不变原理:在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
可见,大学教材,已经认为非真空的光速可变,但是这样定义带来另一个问题,相对论,只在真空中可用,在通常的大气条件下,不可用,这又让一些相对论的盲目追随者不知所措。同学们想参与科学探讨是好的,要先丰富一下自己知识。
1834年,英国物理学家惠斯通利用旋转镜来测定电火花持续的时间,也想用此法来测定光速,同时也想确认一下在拆折射率更大的介质中,光速是否更大.惠斯通的思想方法是正确的,但是他没有完成.
斐索先后研究了光的干涉、热膨胀等,发明了干涉仪.他在研究和测量光速问题上作出了贡献,是第一个不用天文常数、不借助天文观察来测量光速的人.他是采用旋转齿轮的方法来测定光速的.测出的光速为 342539.21千米/秒,这个数值与当时天文学家公认的光速值相差甚小。傅科在物理学史上以其“傅科摆”的实验著名于世。在光速测定的研究中,他是采用旋转平面镜的方法来测量光速的.其测得的光速为29.8×107米/秒,并分析实验误差不可能超过5×105米/秒。1850年5月6日傅科向科学院报告了自己的实验结果,并发现光速在水中比在空气中小,证明了波动说的观点是正确的。迈克耳逊(美国人,A.A.Michelson,1852-1931)继承了傅科的实验思想,用旋转八面棱镜法测得光速为299796千米/秒。
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
2.激光测速法(大学课本)
1970年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍.
光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.
光速是怎么测出来的
还有可见光的频率 红、紫外线是怎么被发现的1.罗默的卫星蚀法
光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默(1644— 1710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A和A’两点时)不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为299840±60km/s.
2.布莱德雷的光行差法
1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为:
C=299930千米/秒
这一数值与实际值比较接近.
以上仅是利用天文学的现象和观察数值对光速的测定,而在实验室内限于当时的条件,测定光速尚不能实现.
二、光速测定的大地测量方法
光速的测定包含着对光所通过的距离和所需时间的量度,由于光速很大,所以必须测量一个很长的距离和一个很短的时间,大地测量法就是围绕着如何准确测定距离和时间而设计的各种方法.
1.伽利略测定光速的方法
物理学发展史上,最早提出测量光速的是意大利物理学家伽利略.1607年在他的实验中,让相距甚远的两个观察者,各执一盏能遮闭的灯,如图所示:观察者A打开灯光,经过一定时间后,光到达观察者B,B立即打开自己的灯光,过了某一时间后,此信号回到A,于是A可以记下从他自己开灯的一瞬间,到信号从B返回到A的一瞬间所经过的时间间隔t.若两观察者的距离为S,则光的速度为
c=2s/t
因为光速很大,加之观察者还要有一定的反应时间,所以伽利略的尝试没有成功.如果用反射镜来代替B,那么情况有所改善,这样就可以避免观察者所引入的误差.这种测量原理长远地保留在后来的一切测定光速的实验方法之中.甚至在现代测定光速的实验中仍然采用.但在信号接收上和时间测量上,要采用可靠的方法.使用这些方法甚至能在不太长的距离上测定光速,并达到足够高的精确度.
2.旋转齿轮法
用实验方法测定光速首先是在1849年由斐索实验.他用定期遮断光线的方法(旋转齿轮法)进行自动记录.实验示意图如下.从光源s发出的光经会聚透镜L1射到半镀银的镜面A,由此反射后在齿轮W的齿a和a’之间的空隙内会聚,再经透镜L2和L3而达到反射镜M,然后再反射回来.又通过半镀镜A由 L4集聚后射入观察者的眼睛E.如使齿轮转动,那么在光达到M镜后再反射回来时所经过的时间△t内,齿轮将转过一个角度.如果这时a与a’之间的空隙为齿 a(或a’)所占据,则反射回来的光将被遮断,因而观察者将看不到光.但如齿轮转到这样一个角度,使由M镜反射回来的光从另一齿间空隙通过,那么观察者会重新看到光,当齿轮转动得更快,反射光又被另一个齿遮断时,光又消失.这样,当齿轮转速由零而逐渐加快时,在E处将看到闪光.由齿轮转速v、齿数n与齿轮和M的间距L可推得光速c=4nvL.
在斐索所做的实验中,当具有720齿的齿轮,一秒钟内转动12.67次时,光将首次被挡住而消失,空隙与轮齿交替所需时间为
在这一时间内,光所经过的光程为2×8633米,所以光速c=2×8633×18244=3.15×108(m/s).
在对信号的发出和返回接收时刻能作自动记录的遮断法除旋转齿轮法外,在现代还采用克尔盒法.1941年安德孙用克尔盒法测得:c=299776±6km/s,1951年贝格斯格兰又用克尔盒法测得c=299793.1±0.3km/s.
3.旋转镜法
旋转镜法的主要特点是能对信号的传播时间作精确测量.1851年傅科成功地运用此法测定了光速.旋转镜法的原理早在1834年1838年就已为惠更斯和阿拉果提出过,它主要用一个高速均匀转动的镜面来代替齿轮装置.由于光源较强,而且聚焦得较好.因此能极其精密地测量很短的时间间隔.实验装置如图所示.从光源s所发出的光通过半镀银的镜面M1后,经过透镜L射在绕O轴旋转的平面反射镜M2上O轴与图面垂直.光从M2反射而会聚到凹面反射镜M3上, M3的曲率中心恰在O轴上,所以光线由M3对称地反射,并在s′点产生光源的像.当M2的转速足够快时,像S′的位置将改变到s〃,相对于可视M2为不转时的位置移动了△s的距离可以推导出光速值:
式中w为M2转动的角速度.l0为M2到M3的间距,l为透镜L到光源S的间距,△s为s的像移动的距离.因此直接测量w、l、l0、△s,便可求得光速.
在傅科的实验中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.
另外,傅科还利用这个实验的基本原理,首次测出了光在介质(水)中的速度v<c,这是对波动说的有力证据.
3.旋转棱镜法
迈克耳逊把齿轮法和旋转镜法结合起来,创造了旋转棱镜法装置.因为齿轮法之所以不够准确,是由于不仅当齿的中央将光遮断时变暗,而且当齿的边缘遮断光时也是如此.因此不能精确地测定象消失的瞬时.旋转镜法也不够精确,因为在该法中象的位移△s太小,只有0.7毫米,不易测准.迈克耳逊的旋转镜法克服了这些缺点.他用一个正八面钢质棱镜代替了旋转镜法中的旋转平面镜,从而光路大大的增长,并利用精确地测定棱镜的转动速度代替测齿轮法中的齿轮转速测出光走完整个路程所需的时间,从而减少了测量误差.从1879年至1926年,迈克耳逊曾前后从事光速的测量工作近五十年,在这方面付出了极大的劳动. 1926年他的最后一个光速测定值为
c=299796km/s
这是当时最精确的测定值,很快成为当时光速的公认值.
三、光速测定的实验室方法
光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.
1.微波谐振腔法
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
2.激光测速法
1790年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍.
四、光速测量方法一览表
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.现将不同方法测定的光速值列为“光速测量一览表”供参考.
根据1975年第十五届国际计量大会的决议,现代真空中光速的最可靠值是:
c=299792.458±0.001km/s
声速测量仪必须配上示波器和信号发生器才能完成测量声速的任务。实验中产生超声波的装置如图所示。它由压电陶瓷管或称超声压电换能器与变幅杆组成;当有交变电压加在压电陶瓷管上时,由于压电体的逆压电效应,使其产生机械振动。此压电陶瓷管粘接在铝合金制成的变幅杆上,经过电子线路的放大,即成为超声波发生器,由于压电陶瓷管的周期性振动,带动变幅杆也做周期轴向振动。当所加交变电压的频率与压电陶瓷的固有频率相同时,压电陶瓷的振幅最大,这使得变幅杆的振幅也最大。变幅杆的端面在空气中激发出纵波,即超声波。本仪器的压电陶瓷的振荡频率在40kHz以上,相应的超声波波长约为几毫米,由于他的波长短,定向发射性能好,本超声波发射器是比较理想的波源。由于变幅杆的端面直径一般在20mm左右,比此波长大很多,因此可以近似认为离开发射器一定距离处的声波是平面波。超声波的接受器则是利用压电体的正压电效应,将接收的机械振动,转化成电振动,为使此电振动增强。特加一选频放大器加以放大,再经屏蔽线输给示波器观测。接收器安装在可移动的机构上,这个机构包扩支架、丝杆、可移动底座(其上装有指针,并通过定位螺母套在丝杆上,有丝杆带动作平移)、带刻度的手轮等。接收器的位置由主、尺刻度手轮的位置决定。主尺位于底座上面;最小方尺位于底坐上面;最小分尺为1mm,手轮与丝杆相连上分为100分格,每转一周,接收器平移1mm,故手每一小格为0.01mm,可估到0.001mm。
1.罗默的卫星蚀法 光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默(1644—1710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A和A’两点时)不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为299840±60km/s.
2.布莱德雷的光行差法
1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为:C=299930千米/秒
这一数值与实际值比较接近.
以上仅是利用天文学的现象和观察数值对光速的测定,而在实验室内限于当时的条件,测定光速尚不能实现.
二、光速测定的大地测量方法
光速的测定包含着对光所通过的距离和所需时间的量度,由于光速很大,所以必须测量一个很长的距离和一个很短的时间,大地测量法就是围绕着如何准确测定距离和时间而设计的各种方法.
1.伽利略测定光速的方法
物理学发展史上,最早提出测量光速的是意大利物理学家伽利略.1607年在他的实验中,让相距甚远的两个观察者,各执一盏能遮闭的灯,如图所示:观察者A打开灯光,经过一定时间后,光到达观察者B,B立即打开自己的灯光,过了某一时间后,此信号回到A,于是A可以记下从他自己开灯的一瞬间,到信号从B返回到A的一瞬间所经过的时间间隔t.若两观察者的距离为S,则光的速度为c=2s/t
因为光速很大,加之观察者还要有一定的反应时间,所以伽利略的尝试没有成功.如果用反射镜来代替B,那么情况有所改善,这样就可以避免观察者所引入的误差.这种测量原理长远地保留在后来的一切测定光速的实验方法之中.甚至在现代测定光速的实验中仍然采用.但在信号接收上和时间测量上,要采用可靠的方法.使用这些方法甚至能在不太长的距离上测定光速,并达到足够高的精确度.
2.旋转齿轮法
用实验方法测定光速首先是在1849年由斐索实验.他用定期遮断光线的方法(旋转齿轮法)进行自动记录.实验示意图如下.从光源s发出的光经会聚透镜L1射到半镀银的镜面A,由此反射后在齿轮W的齿a和a’之间的空隙内会聚,再经透镜L2和L3而达到反射镜M,然后再反射回来.又通过半镀镜A由L4集聚后射入观察者的眼睛E.如使齿轮转动,那么在光达到M镜后再反射回来时所经过的时间△t内,齿轮将转过一个角度.如果这时a与a’之间的空隙为齿a(或a’)所占据,则反射回来的光将被遮断,因而观察者将看不到光.但如齿轮转到这样一个角度,使由M镜反射回来的光从另一齿间空隙通过,那么观察者会重新看到光,当齿轮转动得更快,反射光又被另一个齿遮断时,光又消失.这样,当齿轮转速由零而逐渐加快时,在E处将看到闪光.由齿轮转速v、齿数n与齿轮和M的间距L可推得光速c=4nvL.
在斐索所做的实验中,当具有720齿的齿轮,一秒钟内转动12.67次时,光将首次被挡住而消失,空隙与轮齿交替所需时间为
在这一时间内,光所经过的光程为2×8633米,所以光速c=2×8633×18244=3.15×108(m/s).
在对信号的发出和返回接收时刻能作自动记录的遮断法除旋转齿轮法外,在现代还采用克尔盒法.1941年安德孙用克尔盒法测得:c=299776±6km/s,1951年贝格斯格兰又用克尔盒法测得c=299793.1±0.3km/s.
3.旋转镜法
旋转镜法的主要特点是能对信号的传播时间作精确测量.1851年傅科成功地运用此法测定了光速.旋转镜法的原理早在1834年1838年就已为惠更斯和阿拉果提出过,它主要用一个高速均匀转动的镜面来代替齿轮装置.由于光源较强,而且聚焦得较好.因此能极其精密地测量很短的时间间隔.实验装置如图所示.从光源s所发出的光通过半镀银的镜面M1后,经过透镜L射在绕O轴旋转的平面反射镜M2上O轴与图面垂直.光从M2反射而会聚到凹面反射镜M3上,M3的曲率中心恰在O轴上,所以光线由M3对称地反射,并在s′点产生光源的像.当M2的转速足够快时,像S′的位置将改变到s〃,相对于可视M2为不转时的位置移动了△s的距离可以推导出光速值。式中w为M2转动的角速度.l0为M2到M3的间距,l为透镜L到光源S的间距,△s为s的像移动的距离.因此直接测量w、l、l0、△s,便可求得光速。
在傅科的实验中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.
另外,傅科还利用这个实验的基本原理,首次测出了光在介质(水)中的速度v<c,这是对波动说的有力证据.
3.旋转棱镜法
迈克耳逊把齿轮法和旋转镜法结合起来,创造了旋转棱镜法装置.因为齿轮法之所以不够准确,是由于不仅当齿的中央将光遮断时变暗,而且当齿的边缘遮断光时也是如此.因此不能精确地测定象消失的瞬时.旋转镜法也不够精确,因为在该法中象的位移△s太小,只有0.7毫米,不易测准.迈克耳逊的旋转镜法克服了这些缺点.他用一个正八面钢质棱镜代替了旋转镜法中的旋转平面镜,从而光路大大的增长,并利用精确地测定棱镜的转动速度代替测齿轮法中的齿轮转速测出光走完整个路程所需的时间,从而减少了测量误差.从1879年至1926年,迈克耳逊曾前后从事光速的测量工作近五十年,在这方面付出了极大的劳动.1926年他的最后一个光速测定值为
c=299796km/s
这是当时最精确的测定值,很快成为当时光速的公认值.
三、光速测定的实验室方法(高中课本有)
光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.
1.微波谐振腔法
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
2.激光测速法(大学课本)
1970年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍.
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.
根据1975年第十五届国际计量大会的决议,现代真空中光速的最可靠值是:
c=299792.458±0.001km/s
接近光速时的速度合成
接近光速情况下,笛卡尔坐标系不再适用。同样测量光线离开自己的速度,一个快速追光的人与一个静止的人会测得相同的速度(光速)。这与日常生活中对速度的概念有异。两车以50km/h的速度迎面飞驰,司机会感觉对方的车以50 + 50 = 100km/h行驶,即与自己静止而对方以100km/h迎面驶来的情况无异。但当速度接近光速时,实验证明简单加法计算速度不再奏效。当两飞船以90%光速的速度(对第三者来说)迎面飞行时,船上的人不会感觉对方的飞船以90%c+90%c=180%c光速速度迎面飞来,而只是以稍低于99.5%的光速速度行驶。结果可从爱因斯坦计算速度的算式得出
λ为波长ν为频率
测光的速度 可以测他的波长和频率 很复杂 原理大概是这样
将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.
如果认为本文对您有所帮助请赞助本站