学好物理对于现代学生意味着什么?物理能扩展着我们关于大自然知识的疆界。物理是现代技术进步所需的基本知识,而技术进步将持续驱动着世...
学好物理对于现代学生意味着什么?
物理能扩展着我们关于大自然知识的疆界。物理是现代技术进步所需的基本知识,而技术进步将持续驱动着世界经济发动机的运转。物理有助于技术的基本建设,它为科学进步和发明的利用,提供所需训练有素的人才。物理在培养化学家、工程师、计算机科学家,以及其他物理科学和生物医学科学工作者的教育中,是一个重要的组成部分。.物理学是自然科学中的一部分,是一门研究物质、能量和它们相互作用的学科,它既包含了对物质世界普遍而基本的规律的探索,又对其他自然科学以及科学技术社会生产力的发展具有强大的推动作用。物理学是一门基础学科与其他自然科学有密切的联系,如天文学、地理学、生物学、化学等。我们学习物理不仅仅是为了认识客观世界,更重要是利用物理知识改造世界,科学技术的每一次重大突破都跟物理学分不开,为祖国的社会主义现代化建设服务,为人类文明做出贡献。 目前很多中学生是为了高考,物理在理综中物理占据很大的比例,但我认为还有一些其他原因 。其实,我们的日常生活中有多少物理问题呀!生活其实无时无该不与物理有着密切的联系,像是坐电梯时的超重与失重,像是鸡蛋碰石头的不自量力,像是停车时身体不自主的向前倾倒等等,这些都是物理现象的客观存在。有时看到学市场营销的卖中学物理实验用的传感器,却苦于不懂实验原理,不能亲自展示实验;仪器设备代理人天天抱着物理书,很多人后来意识到,自己总想躲开恼人的物理,没想到未来的工作,总是摆脱不掉物理的影响。 物理与美也有着微妙的联系。例如人体或一些动物的形体一边与另一边完全相同,可以折叠重合,它具有左右对称,它也给人以匀称和均衡的感觉。再例如竹节或串珠,平行移动一定的间隔,图形完全重复,它具有平移对称性,它给人以连贯、流畅的感受。久而久之,这些对称性的感受逐惭成为一项美学准则,广泛应用于建筑、造型艺术、绘画以及工艺美术的装饰之中。你可以从许多中、外著名的建筑、艺术珍品中看到。天坛的建筑、天安门的建筑、颐和园长廊的建筑以及各种花瓶、古人饮酒的爵和各种花边等等是旋转对称、左右对称和平移对称的典型例子。 当你对物理感兴趣了,通过努力学好了物理,你会发现物理是很好学的一门课程,并能从中获得乐趣!学好物理就理所当然的成为当代学生的重要使命。
学习物理学不仅仅可以增长知识,还可以提升人的认识能力,培养人分析问题的逻辑思维能力。
如何学习物理?
一、学习物理概念,力求做到“五会” 初中将学习大量的重要的物理概念、规律,而这些概念、规律,是解决各类问题的基础,因此要真正理解和掌握,应力求做到“五会”: 1会表述:能熟记并正确地叙述概念、规律的内容。 2会表达:明确概念、规律的表达公式及公式中每个符号的物理意义。 3会理解:能掌握公式的应用范围和使用条件。 4会变形:会对公式进行正确变形,并理解变形后的含义。 5会应用:会用概念和公式进行简单的判断、推理和计算。 二、重视画图和识图 学习物理离不开图形,从运用力学知识的机械设计到运用电磁学知识的复杂电路设计,都是主要依靠“图形语言”来表述的。知识的条理化,分析解决问题的思路等问题,用通常意义上的语言或文字表达都是有局限性和低效率的。所以,按照科学的方法动手画图是学习物理的重要方法,而且对今后进一步学习现代科学技术有着重要意义。 在初中物理课里,同学们会学到力的图示、简单的机械图、电路图和光路图。“大纲”要求的画图主要分两部分:一部分画图属于作图类型题,比方说,作光路图、作力的图示、作力臂图以及画电路图等等;另一部分,根据现成的图形学会识图,所谓识图是指要注意结合条件看图,不仅要学会把复杂的图形看简单(即分析图形),更要学会在复杂的图形中看出基本图形。例如,在计算有关电路的习题时,已给出的电路图往往很难分析出来是串联、并联或是混联,如果能熟练地将所给出的电路图画成等效电路图,就会很容易地看出电路的连接特点,使有关问题迎刃而解。 三、重视观察和实验 物理是一门以观察、实验为基础的学科,观察和实验是物理学的重要研究方法。法拉第曾经说过:“没有观察,就没有科学。科学发现诞生于仔细的观察之中。”对于初学物理的初中学生,尤其要重视对现象的仔细观察。因为只有通过对观象的观察,才能对所学的物理知识有生动、形象的感性认识;只有通过仔细、认真的观察,才能使我们对所学知识的理解不断深化。例如,学习运动的相对性,老师讲到参照物时,许多同学都会联想到:坐在火车上的人,会观察到铁路两旁的电杆、树木都向车尾飞奔而去。这个生动的实例使我们对运动的相对性有了形象的认识。 在学习物理知识的过程中,我们还应该重视实验,注意把所学的物理知识与日常生活、生产中的现象结合起来,其中也包含与物理实验现象的结合,因为大量的物理规律是在实验的基础上总结出来的。作为一个刚刚开始学习物理的初中学生,要认真观察老师的演示实验,并独立完成学生的动手操作实验。 在认真完成课内规定实验的基础上,还可以自己设计实验,来判断自己设计的实验方案在实践中是否可行。例如,可以自己设计实验测量学校绿地中一条弯曲小径的长度;可以通过实验测量上学途中骑车的平均速度;还可以设计在缺少电流表或缺少电压表的条件下测量未知电阻的实验。这些都需要同学们自己独立思考、探索,不断提高自己的观察、判断、思维等能力,使自己对物理知识的理解更深刻,分析、解决问题会更全面。 四、学会“两头堵”的分析方法 物理知识的特点是由简到难,逐步深入,随着学习知识的增多,许多同学都感到物理题不好做。这主要是思考的方法不对头的缘故。 拿到一道题后,一般有两条思路:一是从结论入手,看结论想需知,逐步向已知靠拢;二是要“发展”已知,从已知想可知,逐步推向未知;当两个思路“接通”时,便得到解题的通路。这种分析问题的方法,就是我们平时常说的“两头堵”的方法。这种方法说起来容易,真正领会和掌握并非“一日之功”,还需要同学们在学习的过程中逐步地体会并加以应用。 五、注意适当分类,把知识条理化和系统化 当学习过的知识增多时,就很容易记错、记混。因此,可试着按照课文和某些辅导材料中绘制的框架图去帮助记忆和理解。 有时,适当地对概念进行分类,可以使所学的内容化繁为简,重点突出,脉络分明,便于自己进行分析、比较、综合、概括;可以不断地把分散的概念系统化,不断地把新概念纳入旧概念的系统中,逐步在头脑中建立一个清晰的概念系统,使自己在学习的过程中少走弯路。通过这种方法,不但能够加深对基础知识的理解,而且还能收到事半功倍的效果。 学习有法,但学无定法。在学习物理的道路上,愿同学们结合自己的特点,稳扎稳打。
物理这门自然科学课程比较比较难学,靠死记硬背是学不会的,一字不差地背下来,出个题目还是照样不会作。物理课初中、高中、大学各讲一遍,初中定性的东西多,高中定量的东西多,大学定量的东西更多了,而且要用高等数学去计算。那么,如何学好物理呢? 要想学好物理,应当能够做到不仅是能把物理学好,其它课程如数学、化学、语文、历史等都能够学好,也就是说学什么,就能学好什么。实际上在学校里,我们见到的学习好的学生,哪科都学得好,学习差的学生哪科都学得差,基本如此,除了概率很小的先天因素外,这里确实存在一个学习方法问题。 谁不想做一个学习好的学生呢,但是要想成为一名真正学习好的学生,第一条就要好好学习,就是要敢于吃苦,就是要珍惜时间,就是要不屈不挠地去学习。树立信心,坚信自己能够学好任何课程,坚信"能量的转化和守恒定律",坚信有几份付出,就应当有几份收获。关于这一条,请看以下三条语录: 我决不相信,任何先天的或后天的才能,可以无需坚定的长期苦干的品质而得到成功的。--狄更斯(英国文学家) 有的人能够远远超过其他人,其主要原因与其说是天才,不如说他有专心致志坚持学习和不达目的决不罢休的顽强精神。 --道尔顿(英国化学家) 世界上最快而又最慢,最长而又最短,最平凡而又最珍贵,最容易被忽视而最令人后悔的就是时间。 --高尔基(苏联文学家) 以上谈到的第一条应当说是学习态度,思想方法问题。第二条就是要了解作为一名学生在学习上存在如下八个环节:制定计划→课前预习→专心上课→及时复习→独立作业→解决疑难→系统总结→课外学习。这里最重要的是:专心上课→及时复习→独立作业→解决疑难→系统总结,这五个环节。在以上八个环节中,存在着不少的学习方法,下面就针对物理的特点,针对就"如何学好物理",这一问题提出几点具体的学习方法。 (一)三个基本。基本概念要清楚,基本规律要熟悉,基本方法要熟练。关于基本概念,举一个例子。比如说速率。它有两个意思:一是表示速度的大小;二是表示路程与时间的比值(如在匀速圆周运动中),而速度是位移与时间的比值(指在匀速直线运动中)。关于基本规律,比如说平均速度的计算公式有两个经常用到V=s/t、V=(vo+vt)/2。前者是定义式,适用于任何情况,后者是导出式,只适用于做匀变速直线运动的情况。再说一下基本方法,比如说研究中学问题是常采用的整体法和隔离法,就是一个典型的相辅形成的方法。最后再谈一个问题,属于三个基本之外的问题。就是我们在学习物理的过程中,总结出一些简练易记实用的推论或论断,对帮助解题和学好物理是非常有用的。如,"沿着电场线的方向电势降低";"同一根绳上张力相等";"加速度为零时速度最大";"洛仑兹力不做功"等等。 (二)独立做题。要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。 (三)物理过程。要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器等,以显示几何关系。画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。 (四)上课。上课要认真听讲,不走思或尽量少走思。不要自以为是,要虚心向老师学习。不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。尽量与老师保持一致、同步,不能自搞一套,否则就等于是完全自学了。入门以后,有了一定的基础,则允许有自己一定的活动空间,也就是说允许有一些自己的东西,学得越多,自己的东西越多。 (五)笔记本。上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了"消化好",另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的"好题本"。辛辛苦苦建立起来的笔记本要进行编号,以后要经学看,要能做到爱不释手,终生保存。 (六)学习资料。学习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。作记号是指,比方说对练习题吧,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,以备今后阅读,作记号可以节省不少时间。 (七)时间。时间是宝贵的,没有了时间就什么也来不及做了,所以要注意充分利用时间,而利用时间是一门非常高超的艺术。比方说,可以利用"回忆"的学习方法以节省时间,睡觉前、等车时、走在路上等这些时间,我们可以把当天讲的课一节一节地回忆,这样重复地再学一次,能达到强化的目的。物理题有的比较难,有的题可能是在散步时想到它的解法的。学习物理的人脑子里会经常有几道做不出来的题贮存着,念念不忘,不知何时会有所突破,找到问题的答案。 (八)向别人学习。要虚心向别人学习,向同学们学习,向周围的人学习,看人家是怎样学习的,经常与他们进行"学术上"的交流,互教互学,共同提高,千万不能自以为是。也不能保守,有了好方法要告诉别人,这样别人有了好方法也会告诉你。在学习方面要有几个好朋友。 (九)知识结构。要重视知识结构,要系统地掌握好知识结构,这样才能把零散的知识系统起来。大到整个物理的知识结构,小到力学的知识结构,甚至具体到章,如静力学的知识结构等等。 (十)数学。物理的计算要依靠数学,对学物理来说数学太重要了。没有数学这个计算工具物理学是步难行的。大学里物理系的数学课与物理课是并重的。要学好数学,利用好数学这个强有力的工具。 (十一)体育活动。健康的身体是学习好的保证,旺盛的精力是学习高效率的保证。要经常参加体育活动,要会一种、二种锻炼身体的方法,要终生参加体育活动,不能间断,仅由兴趣出发三天打鱼两天晒网地搞体育活动,对身体不会有太大好处。要自觉地有意识地去锻炼身体。要保证充足的睡眠,不能以减少睡觉的时间去增加学习的时间,这种办法不可取。不能以透支健康为代价去换取一点好成绩,不能动不动就讲所谓"冲刺"、"拼搏",学习也要讲究规律性,也就是说总是努力,不搞突击。 以上粗浅地谈了一些学习方法,更具体地、更有效的学习方法需要自己在学习过程中不断摸索、总结,别人的方法也要通过自己去检验才能变为自己的东西。
一、学习物理概念,力求做到“五会” 初中将学习大量的重要的物理概念、规律,而这些概念、规律,是解决各类问题的基础,因此要真正理解和掌握,应力求做到“五会”: 1会表述:能熟记并正确地叙述概念、规律的内容。 2会表达:明确概念、规律的表达公式及公式中每个符号的物理意义。 3会理解:能掌握公式的应用范围和使用条件。 4会变形:会对公式进行正确变形,并理解变形后的含义。 5会应用:会用概念和公式进行简单的判断、推理和计算。 二、重视画图和识图 学习物理离不开图形,从运用力学知识的机械设计到运用电磁学知识的复杂电路设计,都是主要依靠“图形语言”来表述的。知识的条理化,分析解决问题的思路等问题,用通常意义上的语言或文字表达都是有局限性和低效率的。所以,按照科学的方法动手画图是学习物理的重要方法,而且对今后进一步学习现代科学技术有着重要意义。 在初中物理课里,同学们会学到力的图示、简单的机械图、电路图和光路图。“大纲”要求的画图主要分两部分:一部分画图属于作图类型题,比方说,作光路图、作力的图示、作力臂图以及画电路图等等;另一部分,根据现成的图形学会识图,所谓识图是指要注意结合条件看图,不仅要学会把复杂的图形看简单(即分析图形),更要学会在复杂的图形中看出基本图形。例如,在计算有关电路的习题时,已给出的电路图往往很难分析出来是串联、并联或是混联,如果能熟练地将所给出的电路图画成等效电路图,就会很容易地看出电路的连接特点,使有关问题迎刃而解。 三、重视观察和实验 物理是一门以观察、实验为基础的学科,观察和实验是物理学的重要研究方法。法拉第曾经说过:“没有观察,就没有科学。科学发现诞生于仔细的观察之中。”对于初学物理的初中学生,尤其要重视对现象的仔细观察。因为只有通过对观象的观察,才能对所学的物理知识有生动、形象的感性认识;只有通过仔细、认真的观察,才能使我们对所学知识的理解不断深化。例如,学习运动的相对性,老师讲到参照物时,许多同学都会联想到:坐在火车上的人,会观察到铁路两旁的电杆、树木都向车尾飞奔而去。这个生动的实例使我们对运动的相对性有了形象的认识。 在学习物理知识的过程中,我们还应该重视实验,注意把所学的物理知识与日常生活、生产中的现象结合起来,其中也包含与物理实验现象的结合,因为大量的物理规律是在实验的基础上总结出来的。作为一个刚刚开始学习物理的初中学生,要认真观察老师的演示实验,并独立完成学生的动手操作实验。 在认真完成课内规定实验的基础上,还可以自己设计实验,来判断自己设计的实验方案在实践中是否可行。例如,可以自己设计实验测量学校绿地中一条弯曲小径的长度;可以通过实验测量上学途中骑车的平均速度;还可以设计在缺少电流表或缺少电压表的条件下测量未知电阻的实验。这些都需要同学们自己独立思考、探索,不断提高自己的观察、判断、思维等能力,使自己对物理知识的理解更深刻,分析、解决问题会更全面。 四、学会“两头堵”的分析方法 物理知识的特点是由简到难,逐步深入,随着学习知识的增多,许多同学都感到物理题不好做。这主要是思考的方法不对头的缘故。 拿到一道题后,一般有两条思路:一是从结论入手,看结论想需知,逐步向已知靠拢;二是要“发展”已知,从已知想可知,逐步推向未知;当两个思路“接通”时,便得到解题的通路。这种分析问题的方法,就是我们平时常说的“两头堵”的方法。这种方法说起来容易,真正领会和掌握并非“一日之功”,还需要同学们在学习的过程中逐步地体会并加以应用。 五、注意适当分类,把知识条理化和系统化 当学习过的知识增多时,就很容易记错、记混。因此,可试着按照课文和某些辅导材料中绘制的框架图去帮助记忆和理解。 有时,适当地对概念进行分类,可以使所学的内容化繁为简,重点突出,脉络分明,便于自己进行分析、比较、综合、概括;可以不断地把分散的概念系统化,不断地把新概念纳入旧概念的系统中,逐步在头脑中建立一个清晰的概念系统,使自己在学习的过程中少走弯路。通过这种方法,不但能够加深对基础知识的理解,而且还能收到事半功倍的效果。 学习有法,但学无定法。在学习物理的道路上,愿同学们结合自己的特点,稳扎稳打。
总结最重要,包括课堂老师的总结,下课后自我预习复习的总结,错题的总结,最好找一个本,记录体会,平常多翻翻, 对于公式,记忆还需要理解,根据具体情况适当运用,注意公式的运用范围。 不要吧物理等同于数学,特别计算题要养成书写格式的良好习惯。 对于大多数题来说,做图相当重要,电学的电路图关键在简化,画成我们一眼可以分清连接情况,力学的受力分析是做题的基础,光学的光路图可以帮助我们分析问题,甚至热学的沸腾蒸发都会用到图 当然说起来容易,做起来会难一些,不过不要有压力 我认为初高中物理关键在入门,触类会旁通 多多联系实际,多做练习,物理很有意思 第一,分清重点 非重点,选用不同复习方法,力学中摩擦力,动量守恒,机械能,电学中电路,交流电 电磁感应这些都是重点内容。 第二,对于力学题,必须建立良好的思维过程,在写公式之前,把物体图景,运动过程在头脑中成型,然后,从问题出发,把需要解决的物理量一一分析出来,然后再从各个物理过程着手,逐一解决。 第三,对于电学题,要多做题,建立良好的思维习惯,题做多了,自然看到题目就知道向哪个方向去想。 第四,对于热,光,机械振动,原子理论,这几个部分,由于高考中只出选择题,所以把握出题者的心态很重要,他必然要考察一道题,这道题基本能够体现出你对整章知识点掌握程度的。难度不能够太难,但是也不一定就是死记硬背就能答上来,需要进行简单的推倒。 第五,今年气体的计算首次内容大幅度增加,很有可能跟力学进行结合出现在大题中,所以要多加练习。 第六,教材必须吃透,教材上的话可以作为选项出现在选择题上,你只需要,把书看了,不一定要记住,看到选项就会有印象。 第七,建立错题本,做到考后100分,就是考过的卷子,听老师讲了之后,再从新做一遍,力求达到满分。
上课听讲,课后也认真 学习
物理学在生产生活中的应用
初三刚学 作业大家帮帮忙一、力学知识的广泛应用
比如奥运会里的各种运动,都是力与身体的完美结合 摩擦力的应用
摩擦力是一个重要的力,它在社会生产生活实际中应用非常广泛。如人们行走时,在光滑的地面上行走十分困难,这是因为接触面摩擦太小的缘故;汽车上坡打滑时,在路面上撒些粗石子或垫上稻草,汽车就能顺利前进,这是靠增大粗糙程度而增大摩擦力;鞋底做成各种花纹也是增大接触面的粗糙程度而增大摩擦;滑冰运动员穿的滑冰鞋安装滚珠是变滑动摩擦为滚动摩擦,从而减少摩擦而增大滑行速度;各类机器中加润滑油是为了减小齿轮间的摩擦,保证机器的良好运行。可见,人类的生产生活实际都与摩擦力有关,有益的摩擦要充分利用,有害的摩擦要尽量减少。
二、热学知识的应用 热学:
比如我们烧开水,是用火给水加热,而且水到100摄氏度会沸腾,都用的是热学知识。蒸汽机就是运用了这个原理 天气的阴晴、冷暖与人类的各类活动息息相关,包含了很多的物理热学知识。如人们常喝开水、吃熟食,需要对水和食物进行加热,而加热过程中就需知道燃料燃烧或电力加热的基本知识;炎热的夏天在地上撒些水,靠水分的蒸发达到降温的目的;严寒的冬天如何保暖,汽车发动机常用水来散热,保护秧苗不被冻坏而往往采用在夜间向稻田里灌水,都充分利用了水的比热大这一特性;水稻生长在夏季,是由于水稻是喜高温的植物;各种机械轴承、火车轮箍的制造是充分利用固体的热胀冷缩原理。这些都是热学知识在生产生活中的重要应用。
三、光、声现象的应用
人类生存需要光。白天靠阳光,夜间需要灯光,设想宇宙无光,整个世界将陷入一片漆黑,所有生物将无法生存,由此可见光的重要性。然而光到底遵循什么规律,人类怎样利用这些规律为自己服务,这是人类研究光的目的所在。如日
月食现象中遵循的是光在同一均匀介质中沿直线传播;教室里通常用日光灯管而少用白炽灯,除为了节省能源外,更重要的是白炽灯这种光源容易形成阴影,而日光管是平行光,可以避免阴影使我们能够很好的工作学习;夜间行驶的汽车内不开灯是为了避免挡风玻璃反射光而影响驾驶员的视线,汽车的反光镜用凸镜而不用平面镜是为了扩大观察范围,近视眼病人要佩戴凹透镜是为了矫正物体成像在人的视网膜上,手电筒能“收光”是利用凹透焦点发出的光能平行射出。另外,教室的长度限制10m左右是避免原声、回声两次声音,从而使两种声音叠加在一起,加强原声;两山距离和海底深度的测定也是利用声音的传播原理。
四、电学知识的应用
比如我们的生活越来越好,基本人人都可以用到手机,而手机发送,传播和接受信号用到的就是电磁波传播的原理。试想如果没了手机,我们的生活会变成什么样呢!
自法拉发现电磁感应现象以来,人类进入了电气化时代。从生活用电到交通运输、工厂企业用电,都来源于发电机,电已成为人类必不可少的主要能源。在我们的生活中,随处可见电的应用。如夜间走路用的手电,它是将化学能转化为电能;干电池不会发生触电事故,而照明用电如使用不当,将会危及我们的生命安全,这是因为不高于36V的是安全电压,而照明电路的电压是220V,远远高于安全电压;煮饭用电饭煲、电炒锅是将电能转化为内能,电力机车的行驶也是靠电能,一切家用电器都需要电。假设没有电,电动机将不能转动,电力机车不能行驶,电器都不能工作,人类社会将会倒退。因此,电是人类的好伙伴,只要我们严格遵循安全用电原则,我们就可以驯服它,利用它为人类服务。
物理学在各个领域,在生活中占据了重要地位,由于本人能力有限,更多的相关物理应用还有很多未能知晓,总之,物理学处处为人类提供着方便,为祖国发展做着巨大贡献。
综以上论述,物理学引领和推动着广义的物理科学、生命科学、信息科学、材料科学、地球科学、思维科学、哲学等等。物理学自其诞生便作为一门能够不断改写和更新人类文明的学问而存在并不断丰富发展着;它对人类社会进步的贡献是每一位科学家有目共睹的。物理学不仅满足了人们探索未知世界的好奇心与求知欲,同时在其理论发展过程中对工业科技进步及其它自然科学发展潜移默化地起着举足轻重的作用。物理学的发展,不仅为人类物质生产开拓了新的空间,而且为人类精神世界积淀了丰富的宝藏,对人类社会的生产方式、生活方式和思维方式产生了深远的影响。
比如奥运会里的各种运动,都是力与身体的完美结合 摩擦力的应用
摩擦力是一个重要的力,它在社会生产生活实际中应用非常广泛。如人们行走时,在光滑的地面上行走十分困难,这是因为接触面摩擦太小的缘故;汽车上坡打滑时,在路面上撒些粗石子或垫上稻草,汽车就能顺利前进,这是靠增大粗糙程度而增大摩擦力;鞋底做成各种花纹也是增大接触面的粗糙程度而增大摩擦;滑冰运动员穿的滑冰鞋安装滚珠是变滑动摩擦为滚动摩擦,从而减少摩擦而增大滑行速度;各类机器中加润滑油是为了减小齿轮间的摩擦,保证机器的良好运行。可见,人类的生产生活实际都与摩擦力有关,有益的摩擦要充分利用,有害的摩擦要尽量减少。
二、热学知识的应用 热学:
比如我们烧开水,是用火给水加热,而且水到100摄氏度会沸腾,都用的是热学知识。蒸汽机就是运用了这个原理 天气的阴晴、冷暖与人类的各类活动息息相关,包含了很多的物理热学知识。如人们常喝开水、吃熟食,需要对水和食物进行加热,而加热过程中就需知道燃料燃烧或电力加热的基本知识;炎热的夏天在地上撒些水,靠水分的蒸发达到降温的目的;严寒的冬天如何保暖,汽车发动机常用水来散热,保护秧苗不被冻坏而往往采用在夜间向稻田里灌水,都充分利用了水的比热大这一特性;水稻生长在夏季,是由于水稻是喜高温的植物;各种机械轴承、火车轮箍的制造是充分利用固体的热胀冷缩原理。这些都是热学知识在生产生活中的重要应用。
三、光、声现象的应用
人类生存需要光。白天靠阳光,夜间需要灯光,设想宇宙无光,整个世界将陷入一片漆黑,所有生物将无法生存,由此可见光的重要性。然而光到底遵循什么规律,人类怎样利用这些规律为自己服务,这是人类研究光的目的所在。如日
月食现象中遵循的是光在同一均匀介质中沿直线传播;教室里通常用日光灯管而少用白炽灯,除为了节省能源外,更重要的是白炽灯这种光源容易形成阴影,而日光管是平行光,可以避免阴影使我们能够很好的工作学习;夜间行驶的汽车内不开灯是为了避免挡风玻璃反射光而影响驾驶员的视线,汽车的反光镜用凸镜而不用平面镜是为了扩大观察范围,近视眼病人要佩戴凹透镜是为了矫正物体成像在人的视网膜上,手电筒能“收光”是利用凹透焦点发出的光能平行射出。另外,教室的长度限制10m左右是避免原声、回声两次声音,从而使两种声音叠加在一起,加强原声;两山距离和海底深度的测定也是利用声音的传播原理。
四、电学知识的应用
比如我们的生活越来越好,基本人人都可以用到手机,而手机发送,传播和接受信号用到的就是电磁波传播的原理。试想如果没了手机,我们的生活会变成什么样呢!
自法拉发现电磁感应现象以来,人类进入了电气化时代。从生活用电到交通运输、工厂企业用电,都来源于发电机,电已成为人类必不可少的主要能源。在我们的生活中,随处可见电的应用。如夜间走路用的手电,它是将化学能转化为电能;干电池不会发生触电事故,而照明用电如使用不当,将会危及我们的生命安全,这是因为不高于36V的是安全电压,而照明电路的电压是220V,远远高于安全电压;煮饭用电饭煲、电炒锅是将电能转化为内能,电力机车的行驶也是靠电能,一切家用电器都需要电。假设没有电,电动机将不能转动,电力机车不能行驶,电器都不能工作,人类社会将会倒退。因此,电是人类的好伙伴,只要我们严格遵循安全用电原则,我们就可以驯服它,利用它为人类服务。
物理学在各个领域,在生活中占据了重要地位,由于本人能力有限,更多的相关物理应用还有很多未能知晓,总之,物理学处处为人类提供着方便,为祖国发展做着巨大贡献。
综以上论述,物理学引领和推动着广义的物理科学、生命科学、信息科学、材料科学、地球科学、思维科学、哲学等等。物理学自其诞生便作为一门能够不断改写和更新人类文明的学问而存在并不断丰富发展着;它对人类社会进步的贡献是每一位科学家有目共睹的。物理学不仅满足了人们探索未知世界的好奇心与求知欲,同时在其理论发展过程中对工业科技进步及其它自然科学发展潜移默化地起着举足轻重的作用。物理学的发展,不仅为人类物质生产开拓了新的空间,而且为人类精神世界积淀了丰富的宝藏,对人类社会的生产方式、生活方式和思维方式产生了深远的影响。
一、物理学概况
物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学。在现代,物理学已经成为自然科学中最基础的学科之一。因为研究目的和方法的不同,可以把物理学分为理论物理、实验物理和应用物理。
理论物理是以探索宇宙最本质的规律为目的的,其本身可分为基础理论研究和应用理论研究两大部分。公众往往把基础理论研究部分误认为是物理学本身,这是因为从古到今物理学界令人耳熟能详的大师级人物基本都来自这个领域,比如牛顿、麦克斯韦、爱因斯坦、波尔、海森堡、薛定谔、霍金等。经典力学、相对论、量子力学以及目前的量子场论和超弦假说,是到目前为止人类在物理基础理论研究方面取得的最辉煌的成果。现在研究基础理论的学者们大都是在做量子场论(既与相对论相结合之后的更深入的量子理论)及在场论基础上发展起来的超弦假说。最近由于反物质以及存在争议的暗能量的出现,更是激发着从事基础理论研究的大师们酝酿着一个新的突破。而物理应用理论研究,则以物理学的基本规律、实验方法及最新成就为基础,来研究物理学应用,其目的是便于将物理基础理论研究的成果尽快转化为现实的生产力,并反过来推动物理基础理论研究的进步。现在应用理论研究与基础理论研究最大的区别是该研究停留在原子(确切地说是核外电子)的层面上,采用现有的量子理论解决问题,对更深入的粒子本质不做探讨。
实验物理和应用物理并没有明显的界限,区别只是实验出的结果应用程度大小的问题。例如,高能物理(即粒子物理)就属于实验物理,高能物理实验不是以应用为目的,而是以验证基础理论是否正确为主,并通过高能实验的某些新现象的发现来促进基础理论的发展,这个领域最重要也是最独特的实验仪器便是加速器。建造加速器需要国家投入大量的人力、物力和财力,而且在经济上很难得到回报,因此世界上除几个大国外其他国家都对它望而却步。而物理学目前两个最大的分支,即凝聚态物理和光学物理则属于应用物理,其研究对象和人类生活密切相关。凝聚态物理最早的重大成就是半导体的发现及应用,最近又有两个大名鼎鼎的热门方向,一个是“超导”,另一个是“纳米”, 凝聚态物理作为物理学最大的分支方向,它已经逐渐发展成为整个物理学的主干和中心,目前超过半数研究物理的人都在这个领域辛勤地工作着。物质世界一切能量传递的过程都是靠传递光子完成的(如果广义相对论和量子场论标准模型正确的话)。光是一切能量的载体,光速是一切速度的极限,光子可以转化为正反粒子对,也许对光的本质的研究会直接触及物质世界最深层次的奥秘。然而光学的发展却完全偏离探索光本性的方向,光学目前是物理学最接近应用领域的一个分支,因为它的应用性太强了,在实际应用中即可成为能量的载体也可成为信息的载体。激光发现的重要性丝毫不亚于半导体,它使得光学发展为仅次于凝聚态物理的物理学第二大分支,并且目前比凝聚态物理更接近实际应用。
二、改革开放前,物理学及其相关领域的成就
新中国成立之后,迅速建立起了完整的物理学教育和研究体系,在数十所大学设立物理系,物理学教育的规模和质量空前提高,还建立了几十个与物理有关的专业研究院所,从事物理学基础和应用研究。当时在国外的一大批中国物理学家,如周培源、赵忠尧、钱三强、何泽慧、王大珩、胡宁、黄昆、朱光亚等相继归来,他们和留在国内的老一辈物理学家相结合,大大增强了中国物理学队伍的实力。
本世纪50年代以前,中国现代工业基础薄弱,对于力学研究的需求并不感到特别迫切,当时的中国没有专门的力学研究机构。即便如此,仍有一些物理学、数学及工程技术等不同学科的学者进行了力学专门课题的研究。新中国建立后,在我国工业现代化和国防现代化的进程中大大推动了力学这门古老学科的蓬勃发展,在流体力学和固体力学方面取得了一些为世人公认的研究成果。
周培源是中国湍流理论研究的领头人。50年代,在均匀各向同性湍流理论的研究中,周培源和他的学生蔡树棠从分析湍流的物理本质入手,得到了最简单的均匀各向同性湍流的后期衰变运动的二元速度关联函数。在这一思路的基础上,他的学生黄永念用同样的方法,得到了均匀各向同性湍流三元速度关联函数。10年之后,这个三元速度关联函数被国外科学家的实验所证实。为了统一湍流在早期和后期衰变的模型,周培源于1975年提出了“准相似性”概念及与之相适应的条件,并与黄永念把这两个不同的相似性条件统一为一个确定解的物理条件——准相似性条件。这个条件由魏中磊等在1986年北京大学湍流实验室的实验所证实,从此国际上第一次由实验确立了从衰变初期到后期的湍流能量衰变规律的泰勒湍流微尺度扩散规律的理论结果。此外,钱伟长在润滑流体方面做过奠基性工作,谈镐生、郭永怀等物理学家也解决了一些流体力学中的关键性问题,他们都在流体力学方面做出了很大的贡献。
固体力学中理论研究和实际应用之间存在着极为密切的关系。中国力学家在固体力学的各个分支上都进行了许多研究工作。结构及其稳定性是固体力学中的重要课题,中国力学家在这方面的研究成果相应比较集中。圆薄板大挠度问题是一个典型的非线性问题,其非线性微分方程由冯·卡门在1910年提出,但长期没有找到好的求解方法。钱伟长从40年代末对此进行研究,他用解析法手算所达到的精度以及方法的巧妙都令同行赞叹而且引起国际上的重视。后来,钱伟长和他的学生叶开沅最终在80年代彻底解决了这一问题。
物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学。在现代,物理学已经成为自然科学中最基础的学科之一。因为研究目的和方法的不同,可以把物理学分为理论物理、实验物理和应用物理。
理论物理是以探索宇宙最本质的规律为目的的,其本身可分为基础理论研究和应用理论研究两大部分。公众往往把基础理论研究部分误认为是物理学本身,这是因为从古到今物理学界令人耳熟能详的大师级人物基本都来自这个领域,比如牛顿、麦克斯韦、爱因斯坦、波尔、海森堡、薛定谔、霍金等。经典力学、相对论、量子力学以及目前的量子场论和超弦假说,是到目前为止人类在物理基础理论研究方面取得的最辉煌的成果。现在研究基础理论的学者们大都是在做量子场论(既与相对论相结合之后的更深入的量子理论)及在场论基础上发展起来的超弦假说。最近由于反物质以及存在争议的暗能量的出现,更是激发着从事基础理论研究的大师们酝酿着一个新的突破。而物理应用理论研究,则以物理学的基本规律、实验方法及最新成就为基础,来研究物理学应用,其目的是便于将物理基础理论研究的成果尽快转化为现实的生产力,并反过来推动物理基础理论研究的进步。现在应用理论研究与基础理论研究最大的区别是该研究停留在原子(确切地说是核外电子)的层面上,采用现有的量子理论解决问题,对更深入的粒子本质不做探讨。
实验物理和应用物理并没有明显的界限,区别只是实验出的结果应用程度大小的问题。例如,高能物理(即粒子物理)就属于实验物理,高能物理实验不是以应用为目的,而是以验证基础理论是否正确为主,并通过高能实验的某些新现象的发现来促进基础理论的发展,这个领域最重要也是最独特的实验仪器便是加速器。建造加速器需要国家投入大量的人力、物力和财力,而且在经济上很难得到回报,因此世界上除几个大国外其他国家都对它望而却步。而物理学目前两个最大的分支,即凝聚态物理和光学物理则属于应用物理,其研究对象和人类生活密切相关。凝聚态物理最早的重大成就是半导体的发现及应用,最近又有两个大名鼎鼎的热门方向,一个是“超导”,另一个是“纳米”, 凝聚态物理作为物理学最大的分支方向,它已经逐渐发展成为整个物理学的主干和中心,目前超过半数研究物理的人都在这个领域辛勤地工作着。物质世界一切能量传递的过程都是靠传递光子完成的(如果广义相对论和量子场论标准模型正确的话)。光是一切能量的载体,光速是一切速度的极限,光子可以转化为正反粒子对,也许对光的本质的研究会直接触及物质世界最深层次的奥秘。然而光学的发展却完全偏离探索光本性的方向,光学目前是物理学最接近应用领域的一个分支,因为它的应用性太强了,在实际应用中即可成为能量的载体也可成为信息的载体。激光发现的重要性丝毫不亚于半导体,它使得光学发展为仅次于凝聚态物理的物理学第二大分支,并且目前比凝聚态物理更接近实际应用。
二、改革开放前,物理学及其相关领域的成就
新中国成立之后,迅速建立起了完整的物理学教育和研究体系,在数十所大学设立物理系,物理学教育的规模和质量空前提高,还建立了几十个与物理有关的专业研究院所,从事物理学基础和应用研究。当时在国外的一大批中国物理学家,如周培源、赵忠尧、钱三强、何泽慧、王大珩、胡宁、黄昆、朱光亚等相继归来,他们和留在国内的老一辈物理学家相结合,大大增强了中国物理学队伍的实力。
本世纪50年代以前,中国现代工业基础薄弱,对于力学研究的需求并不感到特别迫切,当时的中国没有专门的力学研究机构。即便如此,仍有一些物理学、数学及工程技术等不同学科的学者进行了力学专门课题的研究。新中国建立后,在我国工业现代化和国防现代化的进程中大大推动了力学这门古老学科的蓬勃发展,在流体力学和固体力学方面取得了一些为世人公认的研究成果。
周培源是中国湍流理论研究的领头人。50年代,在均匀各向同性湍流理论的研究中,周培源和他的学生蔡树棠从分析湍流的物理本质入手,得到了最简单的均匀各向同性湍流的后期衰变运动的二元速度关联函数。在这一思路的基础上,他的学生黄永念用同样的方法,得到了均匀各向同性湍流三元速度关联函数。10年之后,这个三元速度关联函数被国外科学家的实验所证实。为了统一湍流在早期和后期衰变的模型,周培源于1975年提出了“准相似性”概念及与之相适应的条件,并与黄永念把这两个不同的相似性条件统一为一个确定解的物理条件——准相似性条件。这个条件由魏中磊等在1986年北京大学湍流实验室的实验所证实,从此国际上第一次由实验确立了从衰变初期到后期的湍流能量衰变规律的泰勒湍流微尺度扩散规律的理论结果。此外,钱伟长在润滑流体方面做过奠基性工作,谈镐生、郭永怀等物理学家也解决了一些流体力学中的关键性问题,他们都在流体力学方面做出了很大的贡献。
固体力学中理论研究和实际应用之间存在着极为密切的关系。中国力学家在固体力学的各个分支上都进行了许多研究工作。结构及其稳定性是固体力学中的重要课题,中国力学家在这方面的研究成果相应比较集中。圆薄板大挠度问题是一个典型的非线性问题,其非线性微分方程由冯·卡门在1910年提出,但长期没有找到好的求解方法。钱伟长从40年代末对此进行研究,他用解析法手算所达到的精度以及方法的巧妙都令同行赞叹而且引起国际上的重视。后来,钱伟长和他的学生叶开沅最终在80年代彻底解决了这一问题。
生活中的物理学
力学
苹果从树上落下是因为万有引力
牛顿提出了万有引力
力的作用是相互的
热学
烤火取暖是利用热传导
电学
奥斯特发现了电生磁
法拉第发现了磁生电
对于人的安全电压是不超过36V
光学
光是沿直线传播的
光从空气传入水中会发生折射
光速是三乘以十的八次方
原子
原子是有元一个和核外电子组成的
在化学反应中原子是不可分割的
在物理学状态中原子是可分割的
力学
苹果从树上落下是因为万有引力
牛顿提出了万有引力
力的作用是相互的
热学
烤火取暖是利用热传导
电学
奥斯特发现了电生磁
法拉第发现了磁生电
对于人的安全电压是不超过36V
光学
光是沿直线传播的
光从空气传入水中会发生折射
光速是三乘以十的八次方
原子
原子是有元一个和核外电子组成的
在化学反应中原子是不可分割的
在物理学状态中原子是可分割的
汽车用冷水降温,利用水的比热容大
电扇吹风可以加快液体表面空气流速,从而增快水分蒸发,水蒸发时吸热
电扇吹风可以加快液体表面空气流速,从而增快水分蒸发,水蒸发时吸热
可以多关注些物理学类的科普书,关于物理学在日常生活中的应用可以看下《鬼脸物理课》,一旦开始读就停不下来。
物理学在现代衣服中的应用
人类的衣服从原始社会的兽皮开始经历了麻、棉、丝、尼龙等,而社会发展到今天,人们衣服的面料也出现了多种,这其中不乏应用物理学原理而造出的新面料,将这种新面料应用到衣物的制造中,人们时刻体验着物理学带来的舒适便捷。
现在的冬天虽然很冷,但是大家穿的衣服却越来越薄,究其原因是物理学的发展,人们将物理学应用到衣服的制作中,其中具有代表性的就是红外线保暖内衣。由于红外线是一种不可见光,它的波长比可见光长,由公式c=λv可知,可见光的频率比红外线的要低。人们最常用的是红外线的热作用,因为红外线的频率比可见光更接近固体物质分子的固有频率,所以它更容易引起分子的共振以达到加热的目的。这是因为红外线的电磁能量转化成了内能,从而使物体发热。根据这个道理,红外线可以用来加热或者烘干物品。红外线保暖内衣就是将红外线这种能量的转化原理利用到贴身所穿的衣物上来达到保暖效果的。红外线可以分为远红外线和近红外线,但是远红外线的波长要比近红外线的波长长。根据科学家的反复研究,最后得知远红外线更容易被人类的皮肤吸收,保暖效果会更好,所以在制作保暖衣的时候大多会采用远红外线技术制作远红外线保暖内衣。
物理学在现代衣服中的应用
人类的衣服从原始社会的兽皮开始经历了麻、棉、丝、尼龙等,而社会发展到今天,人们衣服的面料也出现了多种,这其中不乏应用物理学原理而造出的新面料,将这种新面料应用到衣物的制造中,人们时刻体验着物理学带来的舒适便捷。
现在的冬天虽然很冷,但是大家穿的衣服却越来越薄,究其原因是物理学的发展,人们将物理学应用到衣服的制作中,其中具有代表性的就是红外线保暖内衣。由于红外线是一种不可见光,它的波长比可见光长,由公式c=λv可知,可见光的频率比红外线的要低。人们最常用的是红外线的热作用,因为红外线的频率比可见光更接近固体物质分子的固有频率,所以它更容易引起分子的共振以达到加热的目的。这是因为红外线的电磁能量转化成了内能,从而使物体发热。根据这个道理,红外线可以用来加热或者烘干物品。红外线保暖内衣就是将红外线这种能量的转化原理利用到贴身所穿的衣物上来达到保暖效果的。红外线可以分为远红外线和近红外线,但是远红外线的波长要比近红外线的波长长。根据科学家的反复研究,最后得知远红外线更容易被人类的皮肤吸收,保暖效果会更好,所以在制作保暖衣的时候大多会采用远红外线技术制作远红外线保暖内衣。
本文标题: 基础物理学的学生的日常生活是怎样
本文地址: http://www.lzmy123.com/jingdianwenzhang/282448.html
如果认为本文对您有所帮助请赞助本站