读数学书的读后感1000字(数学书籍读后感)

发布时间: 2025-01-20 14:25:16 来源: 励志妙语 栏目: 读后感 点击: 84

数学书籍读后感,当细细品完一本名著后,大家一定对生活有了新的感悟和看法,需要好好地就所收获的东西写一篇读后感了。那么我们如何去写读后感呢?下面是...

读数学书的读后感1000字(数学书籍读后感)

数学书籍读后感

当细细品完一本名著后,大家一定对生活有了新的感悟和看法,需要好好地就所收获的东西写一篇读后感了。那么我们如何去写读后感呢?下面是我帮大家整理的数学书籍读后感范文(精选13篇),希望对大家有所帮助。

数学书籍读后感 篇1

世纪老人冰心说过:“读书好,好读书,读好书。”“读一本好书,可以使你心灵充实;读一本好书可以使你明辨是非;读一本好书可以使你有爱心、知礼仪。”让我们喜欢读书,热爱读书,从读书中获得快乐与幸福。这是我们第二实验小学师生们不断的追求。我最近读了《数学故事》这本书。本书紧密联系现实生活,是以课本为依据,贯彻新课程的标准理念,从数字、运用、计算、代数、几何、统计、与概率、逻辑推理等方面讲述了一个个精彩的小故事。这里不仅能给予学生智慧,还能给予学生力量,在教育之路上收获的快乐与幸福。这里的数学不在是枯燥的数字,而是一个个活泼有趣的故事,每个故事后面的小板块也为它增色不少。

就说神秘的数字1吧,先讲小故事,数字王国召开大会,主要是讲讲各个数字成员的用途。再说,是有着特殊含义的数字。我们大家都知道,排序的时候,就意味着第一位。而所谓第一位,就是大王或者头目,甚至班长、队长什么的。可是在衡量物品的数量或大小的时候,也被用作代表“很小”、“少”的意思。这时的1,和刚才所说的代表顺序的意思就完全相反了。即使在一个很小的地方,也能发出耀眼的光芒。大家听过“一字值千金”这句话吧?这里把“一”和“千”放在一起比较,更突出了“一”的力量。还有像“千里之行始于足下”、“以一推十”这类的名句也足以证明的神奇之处。

之所以数学里面的一些抽象的东西变成了活了的东西,数是数学学习的基础,数字是蕴藏智慧的精灵,每一个数字背后都有着有趣的故事。0是由谁创造的呢?无穷无尽的数字都有怎样的分类呢?数字之间会发生一些怎样有趣的故事呢?数字王国的秩序如何维持?这些有趣的数学问题在这本书中都有讲述。每一个平凡的数字背后都有一段不平凡的故事,这些故事会给我们打开一个完整不同的数学世界。在这里,数学不再枯燥,数字成了一个个充满智慧的精灵。有趣的数学问题,灵活的解题思路。它不要求你一定解出答案,而是希望你从这些故事中提炼出一种数学思维。奇数、偶数隐藏的秘密这个故事的后面考考你,韩信率部队屡克敌兵,于是赏三军,并且举行了一场拔河比赛。左边的参赛人员是3个小兵和2个大兵,右边参赛人员是4个大兵和1个小兵。比赛之前人们都知道4个大兵的力气和5个小兵的力气相当,但左边那2个大兵是孪生兄弟,力气特别大,他们的力气是2个小兵加1个大兵的力气之和。还没比赛,韩信就说出了胜败,赛后结果正是韩信所说的。那么韩信到底是说哪边胜利呢?象这样有趣的数学问题充分体现了在故事中提炼出一种数学思维。还有休闲吧、思维拓展训练营、问题直通车等帮助理解数学知识。相信这本书将激励孩子告别普通与平庸,在轻松的故事中变得更加优秀。

数学书籍读后感 篇2

在这个暑假里,我看了一本叫《马小跳玩数学》,从中我学到了不少数学知识,还学到了生活中的很多数学题。

比如说:书中的人物唐飞想像福尔摩斯那样擅于断案。他就决定去外面寻找机会,于是就约了毛超和张达一起去。他们在公园里溜达时看到有一辆车子不小心撞到了一位老爷爷,而后急忙掉了个头,开走了。唐飞他们就赶过去把老爷爷扶起。唐飞想:这就是一个好机会,可是车子跑太快了,不知道车的车牌号。张达说:我记得车牌号,是四位数,百位比千位多3。毛超接着说:十位是百位的2倍多1,个位比十位少2。唐飞冥思苦想,终于想出来了,车牌号是:1497。最后,这辆车终于被警方抓获。

从这件事我知道了,生活中有一些小事,要我们去观察,去思考。

数学书籍读后感 篇3

今天,爸爸给我买了一本书,我一看是《马小跳玩数学》,这是什么书呀?于是我津津有味地读了起来,我发现原来这本书还真有趣,其中有个故事令我非常难忘,就是《扑克游戏》。

故事是这样的,有位魔术师请了一位观众抽了一张扑克牌,让观众不要给他看,而是给其他的观众看,然后魔术师就给了这位观众一个公式,让他把所抽的扑克牌上的数字先乘以2,再加3,和再乘以5,最后再把积减去25,然后让他把算出的结果告诉他,那位观众算好后就把结果50告诉了魔术师,只见魔术师从牌里抽出了一张数字6的扑克牌给观众们看,观众们都感到不可思议,后来又用同样的方法试了几遍,都是正确的,观众们发出了啧啧地称赞声,其实这位魔术师是运用了数学公式,他把结果先加上10,然后再把和除以10,这样结果就出来了。

还有很多这样精彩的数学游戏,让我们在玩的时候就掌握了学习方法,真的很棒!

放暑假了,妈妈给我买了一本书,我很快就被书的名字吸引住了,《马小跳玩数学》,在平时,大家都是学数学,而马小跳把它变成了“玩数学”,我感到很有意思,数学怎么就可以玩呢?想到这,我边翻开了书看了起来,果然和以前的大不一样,很有意思的。

作者已将故事的方式,将数学通俗易懂的讲述给大家,树立有很多有趣的故事,我喜欢《蜗牛爬鱼缸》和《野战有游戏事件》等。

每个故事都有一道数学题,马小跳都能一一解答。马小跳是一个聪明快乐的学生,他有正能量,在生活中遇到各种问题他都能保持积极向上的心态。他爱玩、爱闹、爱哭、爱笑也闯祸不止。成绩一般却有情有意,真诚待人,是一个诚实善良的好学生,我羡慕他,更佩服他。

读了《马小跳玩数学》这本书后,我也明白了学习数学的窍门了,无论难题有多大,只要我们肯用心、下苦功就一定能够找到方法解答的。数学可以玩,语文也可以玩,让我们一同来把课文难题当作游戏来玩玩吧!

数学书籍读后感 篇4

暑假里,我读了《数学在哪里》这本书,它主要是唐彩斌和彭翕成编写的,这两位文学作家很有名气,我还读过他们好多的书籍。

《数学在哪里》里面讲解了许多有趣的数学知识,运用故事讲解,让我很容易理解,树立的内容各种各样,有乘除法估算,有简便运算和认识毫米和千米,还有认识周长、面积等等。那里面还有好多趣味的题目,难的题目有时候让我苦思冥想,一个多小时才能解出答案,简单的也很快,我可以5分钟之内就做出来。真是一本有挑战的书啊。

这本书我读过之后,感觉真是一本有趣的书,希望所有的小朋友都可以看一看里面的数学知识,挑战一下有难度的题目,锻炼自己的思维,让自己不断成长。

数学书籍读后感 篇5

我已经是第二次看马小跳玩数学了。杨红樱老师写的马小跳玩数学书很受我们小学生的喜爱。书中含有80个趣味数学故事,如“厉害的侦探”,最让我着迷的是“奇妙的舞蹈队形”里头讲了芭蕾舞队要排练一个节目。一共分两队,它们分别是12人和11人,各要求排成6行,每行4人。夏林果不知该怎么排,结果是马小跳和路曼曼帮她解决,也让我明白了怎样排。

我很喜欢这本书,因为它让我懂了很多以前不懂的解题诀窍。如100米围墙每隔5米栽1棵树,我们经常不想就把它得20棵,但两端却把它给忘了,所以栽的棵数要比段多1棵,就是21棵。

这本书让我们玩中学,学中玩,不再无聊。这本书还让我们懂得了生活中处处都是数学。

数学书籍读后感 篇6

《我就是数学》是华应龙老师的一本教育随笔,全书共有六个部分,即“课前慎思”、“课中求索”、“课后反思”、“听课随想”、“评课心语”和“生活感悟”,其中记录了华老师的教学中的点滴,也有他听课的感受,让人读后能有思,有悟。字里行间都透露出他对教学实践的反思,也有他对人生的感悟。所以读起来让人倍感亲切,生动,感人,又蕴涵智慧,读后回味无穷。

华老师虽然是一名数学教师,但却有着丰富的文化底蕴,文章中经常引古论今,从我国古代的名家到国外的学者;从诗歌到故事他都能结合课堂中发生的事,在全方位的反思中恰当地引用,而且他还善于以日常生活中的事,如农民种地、打篮球等事情联系到教师的教学,联系到数学。这些,都得益于他的喜读善思。一个工作繁忙的教育者,在有限的时间里阅读了如此多的书籍,真的令我佩服得五体投地了。现实中,我们自己总是抱怨没时间读书,时间都用在思考如何教学上了。却不知道,我们平时的思考基本上是在做无米之炊。没有理论作指导,纵然想破脑袋,得出的也必然是肤浅的东西。

华老师的心思却极为细腻,所作随笔大都从细处入手。从老师的教具掉地上,孩子捡起来交给老师,老师没有道谢。到蹲下来和孩子对话,到老师自己擦黑板,到究竟怎么读分数……等等。这些细节问题在我们的课堂上都会经常出现有的我有所注意,有的我根本就没放在心上。读了华老师的这些随笔,对我太有启发了。是的,教育就是要从小细节方面入手,小的不注意,大的即使注意了,对一个教育者的进步来说,也不会有特别大的作用。

华老师在课堂上的成功,我觉得最大的原因是来自于他在课前的慎思。如在“角的度量”一课,他思考能否创设一种情境,让学生感受到量角的用处,经过多天的搜寻、比较、思考,他设计了大头儿子和小头爸爸配玻璃的情境,但与同组老师讨论后又否定了这一情境,最终经过反复思考后创设了三个滑梯的设计,这个设计既让学生感受到量角的必要性,又缩短了数学教材与学生生活经验之间的距离。同时,华老师也十分注重课后的反思,更重要的是反思后的再实践。学生的一个错、一句话,教师在课堂上一个不经意的行为都会让他思考良久。正是他这种课前、课中和课后不断思索的精神,才成就了现在这个在课堂中游刃有余,让无数教师佩服,让无数学生喜欢的华老师。

《我就是数学》是一本好书,它以生动地形式教给了我一种教学理念,教会了我一种教学方法,让我在今后的工作中受益无穷。

数学书籍读后感 篇7

你知道三角形的作用吗?你知道混合运算是怎样算的吗?那就跟我一起“玩转数学”吧!

它是一本根据故事来传授知识的书,让我们对枯燥的的数学有了新的认识。它把数学问题融入到故事中,不是简单、直观的数学算式,而是在故事中思考数学问题。例如猴妈妈买桃分桃的故事。它是一个童话故事,讲述了小猴可爱的一面,同时也提出了数学难题。让我在不知不觉中用数学知识帮小猴解决了问题。还有很多呢,比如怎样列除法算式、用谐音记数字和十进制的由来。希望你也来读这本好书。

数学书籍读后感 篇8

崭新的一天开始了,我在做作业时,突然眼前闪过一本书的背影,我好奇地停下手里的作业,转身拿起看了起来。

这本书可有趣啦。我仿佛置身其中,聪明,机智,活泼顽皮的马小跳带着我,来到了数学世界。并在这里解开了一道又一道难题。例如开空调,天冷了,三家人都开空调,但大家一起开的时候功率大,线路承受不起,因此大家要想办法解决实际的苦难,大家把难题扔给了马小跳处理,马小跳严肃而又认真地考虑问题,并又做了实际的考察,最后合理解决了大家的问题。原来空调在同样的功率下可以计算出它的用电量,4台空调是一样的功率下,假设3台空调同时开,每天可以开24小时,用电量等于24×3=72小时,现在平均4台空调上,每台可以用72÷4=18小时。我觉得好有意思。

这本书我喜欢,他把数学知识寓于故事中,让我既读了故事,又学会了知识和道理。

数学书籍读后感 篇9

数学的发展史也就是科学发展的历史。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。每一步都包含艰辛,渗透着无限的思考,在这期间,有多少人将自己的一生都奉献给了数学,给了这一门散发着无穷魅力的学科。

《数学史选讲》一书首先讲述了各种各样的记数方法,有象形文字中繁琐的数字记法,有楔形文字中造型独特的记数法,由中国古代简易的算筹记数,有玛雅以神的头像作为数字的奇异的记数法,还有沿用至今的印度—阿拉伯数码。从早期的记数制度演变中不难看出,就连数字的创造都是艰辛的,在那个时候,如何发明一种便于使用、耐于使用的记数法,是建立数学学科的至关重要的基础。可以说,若然没有了人类对数字以及记数制度这种最初的研究探索,力求创造出一种最为简易方便的记数法,往后数学的研究便加倍了曲折、加倍了困难。

而在漫长的数学发展史中,最重要的莫过于无数为此奋斗一生的数学家,因为有了他们的辛酸血泪,有了他们的严谨态度和锲而不舍的探索精神,才为数学打下了坚实的基础,从而给平面解析几何、微积分、无穷集合论等等的数学分支创造了诞生的机会。然而数学的发展史曲折的、艰辛的,数学家的研究里程更是如此。他们花尽一生的心思换来的创新思维和超时代理论,大多数在他们的有生之年都得不到世人的认同。希帕苏斯向毕达哥拉斯学派的其他成员发表他对不可公度性的发现时,惊恐不已的成员将他抛进了大海;伽罗瓦提出的强有力的群论多次提交给科学院,最终得到的却是“完全无法理解”的评论;创造惊人的无穷集合论的康托尔最后带着诸多遗憾和无限的苦闷离开了人世;最怀才不遇的便是中学数学家阿贝尔,他经过无数努力最终证明了千古谜题——五次或以上的代数方程没有一般的求根公式,却遭到了一系列的冷遇,就连“数学王子”高斯看到论文的题目只说了一句“太可怕了,竟然写出这种东西来!”便连其正文都没看就把论文扔到了书堆里,尽管当时柏林大学已经认识到他的才华并任命他为数学教授,但阿贝尔早已在病魔侵袭的凄凉中与世长辞了。

尽管如今他们的理论得到世人的称赞,但在当初他们却受尽嘲笑与唾骂,他们不像当时就闻名于世的数学家那样,一有新的理论产生便受到全世界的重视,然后在钦佩与荣耀的光芒下继续他们的研究。虽然如此,他们仍旧坚定不移地相信自己,为自己的数学事业独立奋斗,深入探索,进一步发展和完善自己的理论。就如康托尔那番充满信心的话语:“我的理论坚如磐石,任何想要动摇它的人都将搬起石头砸自己的脚。”这种自信与坚定无不让人敬佩。

而许多的数学家都有一个共同点,就是他们的知识层面除了数学以外,还有其他的多个领域。譬如,泰勒斯是古希腊最早的数学家、哲学家,他几乎涉猎了当时人类的全部思想和活动领域;费马有丰富的法律知识,精通多门语言;莱布尼茨学习了拉丁文、希腊文、修辞学、算术、逻辑、音乐,还广泛阅读并研究了大量哲学和科学着作;在欧拉的工作中,数学紧密地和其他科学的应用、各种技术应用以及公众的生活联系在一起,它常常为解决力学、天文学、物理学、航海学、地理学、大地测量学、流体力学、弹道学、保险业和人口统计学等问题提供数学方法。由此可见,想要获得在一个学科的研究的成功,不仅需要精通该学科的知识,还需要学习其他学科、领域的知识,综合运用,才能更好地让这些知识为自己的研究服务。

自信、坚定、还有多领域的知识固然重要,但老师对他们的帮助也不可多得。牛顿在巴罗教授的课程中得到研究流数的灵感,欧拉继承微积分权威约翰·伯努利的衣钵成为“分析的化身”,阿贝尔在老师霍尔姆伯的鼓励与指导下,破解了五次或以上代数方程公式求解的未解之谜,伽罗瓦被里查德教授发现为千里马,成为了群论的开山祖师,康托尔师从库默尔、魏尔斯特拉斯和克罗内克等着名数学家,创立了无穷集合论,而华罗庚更是当年被熊庆来发掘,如今他又发掘了陈景润。一位伟大的`数学家背后往往有一位劳苦功高的老师,也许他们的老师如今已不为人所知,但他们所做出的努力与教导并不亚于这些数学家,正因有了他们耐心的教导,给予的莫大支持、鼓励,才给了他们展露锋芒的机会,而这些数学家虚心从师的精神也值得我们学习、效仿。

除此之外,从数学家的努力探索之中,我们可以发现数学研究所必需的过程。首先,要从细微的事情中发掘数学的道理、发现问题的存在,又或是对某一问题产生莫大的兴趣与研究精神。这一步许多人都能做到,就像牛顿对一个掉下来的苹果做出思考,从而创造万有引力定律一样,在我们的日常生活中,我们都能对一些平常事物提出问题,在遇到一些难题的时候有种想攻破它的冲动。然后,必须锲而不舍地做出深入的探究。这一步往往只有少数人能够做到,但这偏偏就是最重要的一步,缺乏了它,前面的一切苦劳都只是白费。在遇到困难面前,依然能够怀有当初的冲动与勇气想要征服它的,往往就是伟大的开始、成功的关键。但只有这份冲动与勇气是不够的,一位伟大的数学家,还必须拥有创新的精神,有对人们根深蒂固思想做出怀疑的精神,勇于打破个人崇拜与教条主义,创造出自己的新思想,就像笛卡儿对坐标系的建立,牛顿和莱布尼茨对微积分的创立,高斯对非欧几何的确立,伽罗瓦对群论这一新概念的创造,康托尔对无穷集合论的坚信等等,他们之所以能够成为受万人瞩目的数学家,是与他们的创新思维分不开的。

总的来说,这些数学家成功的经验教会了我们学生在现阶段应如何做好准备,迎接未来的挑战。在思想上,我们应该培养创新思维、自信心、对自我坚定的信念、以及面对困难毫不畏惧的精神。在行动上,要虚心从师,不耻下问,积极学习多方面的知识,做到对知识的融会贯通,运用到日常生活的事情中。

“刘徽的割圆术比古希腊的穷竭法要晚几百年”、“笛卡儿和费马不约而同、殊途同归地建立解析几何”、“牛顿和莱布尼茨两位奠基人不约而同的努力,使得微积分作为一门独立学科建立起来”……在数学史的发展历程中,不少相同的研究成果都重复地被人类发掘,这种数学研究的时间差无疑耽误了数学的发展,重复地为同一个问题而努力,却不知道事实上他人早已解决,如果世界能够更早地融合为一体,便能更好地互相交流数学文化,共同研究、共同进步,那么就不需要花上几百年甚至更长的时间重复地走同一条弯路,而能更快地推动数学的发展,也许世界数学的发展速度就不只现在的步伐了。

而此书也提到了数学创立的一个条件:“在实用的技术发明之后,那些并不直接为生活的需要或满足的科学才会产生出来。它首先出现在人们有闲暇的地方,数学科学最早在埃及兴起,就是因为那里的祭司阶层享有足够的闲暇。”这说明了“闲暇”对于科学兴起的重要性。的确,当温饱问题没有解决,脑力劳动与体力劳动尚未分开时,人们无暇去发明科学,只有当享有闲暇时,人们才有足够的时间与精力花费在科学的创造中,才会从最初的玩弄数字起,逐渐深入探究,从生活琐事中发现数学的问题,从而创造谜题,再去解决,这样一步步地走来,才会有如今的数学学科。要是没有了闲暇,很可能就没有了后面的一切。同样,作为学生的我们也需要空出闲暇来认真研究数学,如果连每天的作业都难以按时完成,那么还哪说得上去破解数学的难题呢?

数学的发展还很长久,还有许多路要走,我们就像牛顿说的那般,只不过是在海边玩耍的小孩,在我们面前仍有一片未知的真理的海洋,数学的无穷魅力就埋在这里面,等着我们去发掘,等着我们去探索。

数学书籍读后感 篇10

今年暑假妈妈带我到市大众书局,向我推荐了《趣味数学》这本书,刚看到书名我想又是一本辅导类书,有什么好看的。妈妈建议我先看一看再说,读着读着我就被书的内容吸引住了,书的内容真的很有趣,难怪叫趣味数学。

这本书用很多个有趣的数学游戏活动,介绍了富有教育意义的数学故事,如摆树叶、军事游戏、填幻方到从幻方中寻找"和"为已知的四维数组、根据实际问题列方程组、收集数据、整理数据、分析数据……每一次数学活动都是培养思维能力、想象力、实践力的最好课外训练。它寓教于乐,是对我们小学生进行有趣的、益智训练的好书。

假期中我一有空就拿出来读,书里的很多游戏都是我和爸爸、妈 妈一起合作完成的,在玩中学,在学中玩,时间不知不觉就过去了,在轻松、愉快的气氛中,我不仅学到了许多数学知识,还深刻体会到了父母对我爱。现在我已经迷上了《趣味数学》,和它成为好朋友了,

《趣味数学》真的是太有趣了。

数学书籍读后感 篇11

每当我们正在学习的时候,总会遇到一些困难,总会说:"读书一点也没劲,一点劲也没有。"

今天,我看了一本书名叫趣味数学大王,里面全是一些有趣的故事,每当同学们在学习的时候,学累了就可以看这本书,它可以把枯燥 的知识融合进有趣的故事来,会怎样呢?

趣味数学大王这本书唤起了我们对数学的兴趣。这本书里,好象把我带到了童话世界:每一个小故事都有有声有色的图画,非常富有情趣,具有很强的可读性。每个故事中含有一个数学题,程度有浅有深,在故事的最后,有这道题的正确解法和答案巧妙的告诉你的……

在这个社会上数学是一门重要的基础学科。它的重要性非常大的,曾有这样的三句话:数学是建设四化的武器,数学是其他科学的基础,数学是锻炼思维的体操。里面的故事简直是多的事,比如说有着这样的一个有趣的故事,驴和马一块驮着粮食,去城市里,驴才走了一会儿,就不肯走了,驴对马说:"马大哥你背的有多重呀?"马就出了给驴的题目,再说驴算出了马驮的有多重,自己算出了自己驮的有多重,在也不叫苦叫累。

你听完了,你一会懂得了一些数学知识,你一定还会懂得一些故事里的一些教你做人的道理。

我读完了这本书,感到了这本书写的非常好,这本书还看展了 "讲故事,做习题"的活动,学习是紧张的,更应该是有趣的,希望小朋友们看了这本书学的轻松,学的有劲,取得最好的学习效果。

数学书籍读后感 篇12

原来数学在生活中也有这么大的用处:在《智斗蜘蛛精》里,八戒被4个女妖围在了中间他得先打死头儿蜘蛛精但他不知道她变换以后的位置,然而数学观察到了:位置是按顺时针方向转动的,每变4次又回到原来的位置,根据这个规律能列出一个除法算式:(变阵的次数=n)n÷4=□…□这个余数是几,就是几号位置。

还有一次在《悟空戏猕猴》那一集里,1~66报数,(以一、二、一、二的顺序报凡是报以的都有可能是自己,直到最后那个才是自己,不过悟空让数学猴不能报数)悟空要数学猴一次把自己指出来数学猴马上就说:“64号,你是悟空,你出来吧。”原来他是这样想的:有五只羊,9只羊一排,最后留下的一定是8号他的规律是2,4=2×2,8=2×2×2……对于66来说,具有最大特点的数就是64因为64=2×2×2×2×2结果这才找出了孙悟空。

所以,我以后一定要好好学数学,解决生活中的一些小问题。

数学书籍读后感 篇13

这个暑假爸爸给我买了一《数学荒岛历险记》。

这书一共有十小本,我看了很长时间才看完,现在给大家介绍一下里面的人物,里面有依依、罗克、LIBIQ、花花公主、国王等主要人物,就是这些人出了很多有趣的题目。

有一个怪兽了数字王国,它看见了数字5、24、44却只吃了24和44;14、35、100去攻击怪兽,怪兽只吞了100下去,35却安然无恙,为什么怪兽不是所有的数字都吃呢?

我想了很久很久也没有想出来,看到最后,才明白原来怪兽只吃4倍数,24、44、100是因为他们都是4的倍数,而其他的都不是4的倍数,所以怪兽不吃它们,很有趣的题目,呵,所以更让我知道数字没有一定很死板的答案,要多动脑筋多思考一定有很多答案,开学欢迎同学们一起来看《数学荒岛历险记》。

《数学史》读后感1000字

《数学史》读后感

 众所周知,数学是人类文明的一个重要组成部分。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。

  读完《数学文化》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。

  数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

  数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立……这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。

  在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!

  数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。

  从文化的角度去看数学,是一个新问题。不过我相信,一旦你踏进数学文化的门槛,就会惊奇地发现这是一个美仑美奂的奇异世界。而本文所提及的一些东西还只是隔岸观火的皮毛,相信随着人们对数学文化的深入研究,一定会呈现给人类一个更加精彩的世界。总之,数学文化是一个比较精彩的文化,是一个未知的我们广大青少年去了解的文化,慢慢体会,别有一般滋味在里面。

《古今数学思想》的读后感1000字

阅读M·克莱因的《古今数学思想》一书后,使我了解了数学的乐趣所在。
《古今数学思想》论述了从古代一直到20世纪头几十年,这数千年中数学大部分分支的历史发展,内容有美索不达米亚的数学、埃及的数学、古典希腊数学的产生等,阐述了一些重要的数学思想的来源、数学之间与数学和其他自然科学,尤其是力学、物理学的关系。
恐怕没有人比M.克莱因更熟悉数学的来龙去脉了,作者把西方数学史写得脉络清晰,也非常吸引人。
读了古今数学思想1后,颇有感触:看来读任何学科的东西都要读它的发展史啊 。
我们往往太过于吹捧数学的理性精神了。但实际上这门学科的发展从来都是和经验密不可分,否则负数、无理数、无穷大、无穷小也不会几千年都不被人接受。有天文才有三角和球面几何,有绘画才有射影几何。第11章文艺复兴的最后一节,“经验主义的兴起”,观点很精彩。正是有了经验的材料,数学才得以大跨步向前发展。
当然,这也是符合我的观点的。我一向都认为,根本不存在什么脱离经验的纯理性。
但也不可否定理性对经验的指导作用。
没有微积分就没有现代数学,众所周知,从希腊世界到中世纪,一直崇尚几何蔑视代数的情形下,是很难产生变化的思想的,必须要有从几何到代数的适当转移。经过阿拉伯世界的熏陶,西方人终于开始解放思想。13章,“十六七世纪的代数”,牛顿、莱布尼兹、费马等开始登场,代数终于从几何中脱离出来了。
最后一章射影几何,在经验材料的基础上,在人们对现实应用的需求上,数学(几何学)终于开始走下神坛,新分支新理论终于开始出现。从此,数学的视野不断放宽。
其实大学的射影几何也不过是Desargues一人的成果。  原来帕斯卡最重要的贡献是射影几何方面。
最后一节太精彩了。连续变化的思想就此开始。微积分的思想基础渐渐渗透、增压,待到第二册中引发爆炸。
就整个第一册来讲,有这么样一种感觉:作者太迷恋希腊世界了,然后对罗马世界嗤之以鼻。这也许应该是作者的一种偏见吧。
读古今数学思想1后使我感悟到:
学习数学,重要的是理解,而不是像别的科目一样死背下来.
数学有一个特点,那就是“闻一知十”.做会了一道题,就可以总结这道题所包含的方法和原理,再用总结的原理去解决这类题,
学习数学还有一点很重要,那就是从已知、基本的入手,稳妥当当的去练,不好高骛远,不求全部题都做。
在做题的过程中,最忌讳的就是粗心大意.明明一道题会做,却因大意做错了,是很不值得的.
所以在考数学的时候,肯定不要太急,要条理清楚的去计算,思索;这样速率可能会稍慢,但却可以使你不丢分.相比之下,我会接纳稍慢的计算方法,多思、多想,尽量做到不漏、不错.
我想学习是终身的事情,不要过于着急,一步一个脚迹的来,肯定会取得意想不到的效果.
上述就是我读古今数学思想1后的 观后感。

数学读后感

品味完一本名著后,相信你一定有很多值得分享的收获,何不写一篇读后感记录下呢?想必许多人都在为如何写好读后感而烦恼吧,以下是我为大家整理的数学读后感(精选13篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

数学读后感 篇1

这个星期,我看了一本书,名字叫《帮你学数学》,是张景中写的。

这本书的每一个小故事都有有声有色的图画,每个故事中含有一个数学题,程度有浅有深,在故事的最后,有这道题的正确解法和答案。

在这个社会上数学是一门重要的基础学科。它的重要性非常大的,曾有这样的三句话:数学是建设四化的武器,数学是其他科学的基础,数学是锻炼思维的体操。里面的故事简直是多的事,比如说有着这样的一个有趣的故事,驴和马一块驮着粮食,去城市里,驴才走了一会儿,就不肯走了,驴对马说:"马大哥你背的有多重呀?"马就出了给驴的题目,再说驴算出了马驮的有多重,自己算出了自己驮的有多重,在也不叫苦叫累。

我读完了这本书,感觉这本书写的非常好,学习是紧张的,更应该是有趣的,希望大家看了这本书学的轻松,学的有劲,取得最好的学习效果。

数学读后感 篇2

读过《数学大世界》这本书,这本书主要写在数学上易错的题和数学学的很好的人,还有考题。

这本书第一页还有富含深刻道理的故事。比如:书上空瓶子这个故事告诉我们,自吹自擂的人往往脑袋空空,是会被人嘲笑的。我们一定要踏踏实实,努力学习。还有科学家法拉第的故事。他们一家人一个星期只能吃一个长面包。法拉第量了一下长度是42厘米。我想,这面包分配在7天吃,也就是一天吃42÷7=6厘米长的面包。法拉第又找来白纸,把面包放在白纸上,在白纸上画了13条距离相等的线条。早晚各吃一片,一周正好吃完。我又想为什么不画14条线条呢?我又仔细一写想,啊!如果画14条,那一切,就是15片,15÷7=2(片)……1(片),条件是一周正好吃完,切14条,15片一天吃2片还剩1片,不符合条件,所以不画14条。我又一想:一天吃2片,那么1片就是6÷2=3厘米……

我读了《数学大世界》这本书,增长了好多知识呢!

数学读后感 篇3

《故事中的数学》这本书是谈祥柏教授写的。这本书讲述了一个又一个生动有趣的故事,但每个故事中都有关于数学的知识。这一个又一个的趣味故事,无论是在古代,还是在近代,数学在人们的生活中无处不在。

在这本书中,每一个生动的故事,都讲述着一个关于数学的道理。这些趣味数学,题材广泛,妙趣横生,并且与智力训练巧妙结合,深受我的喜爱。其中几个故事,也让我明白了很多我不理解的数字道理。比如,书中有一个故事叫神奇的1001,说1001是一个非常好玩的数。任意一个3位数乘以1001,你简直算都不用算,只要一眨眼睛,结果就出来了。其办法是:只要把那个3位数克隆一下接在原始的后面,使之变成6位数学就行了。例如:357*1001=357357,606*1001=606606。非常有趣吧!

看完这本书,我受益匪浅。我本来就很喜欢数学,读完这本书以后,使我产生了研究数学的巨大兴趣,让我倍受鼓舞。

我想说,这本书,虽然表面上是在写故事,但它实际上在写数学在日常生活中的应用,仔细琢磨,确实如此。

请大家都来看看这本《故事中的数学》吧!让我们一起去体验数学的奥秘!

数学读后感 篇4

读了《快乐数学》这本书,我深深体会到,在我成长的道路上一直没有离开过数学的陪伴。

学习了数字,我认识了时间和标识;学习了四则运算,我能够自己买东西和独立思考;学习了好玩的数学游戏,我再也没有了无聊的烦恼。现在《快乐数学》又告诉了我什么是“5千米生活圈”、如何来“知识创造财富”,另外也给我带来了神奇的回文数、卡普卡雷数……这些奇妙的“数”让计算变得更简单,让生活变得更方便。

数学真的好奇妙,在成长的道路上我们一定会成为好伙伴!

数学读后感 篇5

我这几天都在看数学老师推荐的《奇妙的几何图形》的数学课外书,有6本,我看了《飞翔的圆》这本书的作者是雷奥与帕拉斯,你们是不是要知道圆是什么样的。

我们有时在晚上可以看见满月,满月就是那个圆,可是有更神奇的东西,如美国的圆形的火坑和英国亚瑟王的圆桌子模状,还有奥林匹克的标志和它们的硬币,还有用圆规画的圆,我们用圆在日厉上圈出是一个特别的日子。

圆还有一部分叫扇形,圆中有个半圆也是圆的一半,半圆形的底部是整个圆的直径,即那条穿过圆心线。在我们生活中有许多半圆形的东西,比如孔雀开屏时我们一下就觉得很耀眼,因它尾巴几近展出一个完美的半圆形。还有古希腊埃皮达鲁斯圆形剧场中间也是圆的。我们的零食上那个饼也有圆形的形状。

有一次在电视上我看到人家去玩,看到摩天轮也是圆的,它很容易转起来也可以滚动起来,还有旋转木马转起来也是圆的。

其实我们生活中还有很多都是圆的,只要我们稍微想一下都可以找到圆形,圆的知识真的很奇妙让我们更进一步的了解圆的定义,以上就是我看了这本书的感想!

数学读后感 篇6

今年暑假妈妈带我到市大众书局,向我推荐了《趣味数学》这本书,刚看到书名我想又是一本辅导类书,有什么好看的。妈妈建议我先看一看再说,读着读着我就被书的内容吸引住了,书的内容真的很有趣,难怪叫趣味数学。

这本书用很多个有趣的数学游戏活动,介绍了富有教育意义的数学故事,如摆树叶、军事游戏、填幻方到从幻方中寻找“和”为已知的四维数组、根据实际问题列方程组、收集数据、整理数据、分析数据…。。每一次数学活动都是培养思维能力、想象力、实践力的最好课外训练。它寓教于乐,是对我们小学生进行有趣的、益智训练的好书。

假期中我一有空就拿出来读,书里的很多游戏都是我和爸爸、妈 妈一起合作完成的,在玩中学,在学中玩,时间不知不觉就过去了,在轻松、愉快的气氛中,我不仅学到了许多数学知识,还深刻体会到了父母对我爱。现在我已经迷上了《趣味数学》,和它成为好朋友了,

《趣味数学》真的是太有趣了。

数学读后感 篇7

我又再一次的乘坐穿梭机去往数学王国里探索奥秘,开启新的知识大门,让我们在导游——多多的启发下思考问题吧!

在第三单元里我学到了很多,比如:形形色色的'尺子告诉我直尺不是最好的哦!因为在小物体测量时直尺方便,而大物体上时却很麻烦的,所以尺子中没有最好的,少哪个都不行,还有一些面积、长度、时间、速度等单位知识。

在第四单元中我也学到的也不少,我来分享我的新知识吧!在这里我和多多导游来到古代,导游用钱去换苹果可换不成,又来一个人,他用三只鸡换苹果就成了,原来最早的年代是物品换这买卖的呀!比这个更重要的是我学会了怎么做个合格的理财小专家,现在我把钱都存到银行里,还能钱生钱哦!

今天的游览到此结束了,游客们一一坐上穿梭机,我们即将要返航了,多多恋恋不舍的说:“后会有期,再见!”

数学读后感 篇8

第一次看到书名《印度数学》,和封面上的小标题—世界上最神奇的数学课。我就在想,印度数学?它和我们学的数学有什么不一样么?数学还有不同的?“最神奇的数学”,为什么神奇?神奇在哪?难道不用加减乘除?带着满心的疑问,我翻开了书。

书里讲的也是加减乘除,那神奇在哪呢?它的神奇就在它算式的算法。咦?难道不是按个位,十位的竖式计算方法吗?没错,印度数学的计算方法还真不是这样,不信?我举个例子吧。比如两位数减两位数:92-43,它的计算方式是把92分成90+2,43分成50-7,再从高到低计算,整数相减,个位相加。

我最喜欢的是“结网计数”这篇,因为它完全是用画图来计数。

书里还有许多计算方法是我看不明白的,比如面积计算法,一元一次和两元一次的计算。

果然,印度数学的这些计算方法和我们学的很不同,但是真的很有趣。我真是第一次知道,原来数学还有这样的啊。

数学读后感 篇9

一个奇特的数字电梯,你想进去吗?一个奇怪的数字大门,你想闯进去吗?一位可怕的数学魔鬼,你敢见它吗?如果你的答案是肯定的话,那就同我一起进入数学的世界吧!

“可怕”的数学这本书主要讲了数学里的圆、长方形、正方形等形状,还有一位数学魔鬼,它会领着你来到数学的王国里,当然它偶尔也会犯点小错误,但这些小错误为我们增添了许多乐趣。

让我们一起来瞧一瞧书中的精彩片段吧:你的面前出现了一位十分可怕的魔鬼,它取出三个方块,口中念念有词,它说了声“变”,我就来到了一个仙境一样的地方,到处全是方的,方的树、方的鸟,连我的身子也全是方的,到处是数字和符号:+、—、小数……

数学两个字的含义数不清,也十分深奥,如果数学是一座很大的城堡,那么我才刚刚来到了这座城堡的大门口!大家如果喜欢数学,也来看看这本书,它不仅富含趣味性,还让所有读过这本书的人全都喜爱上数学。

数学读后感 篇10

做一名好教师首先让学生喜欢“我“;让学生喜欢数学;在这基础上学生才能学会学习;最后千万不可忽视的是一定要让学生从小养成好的学习习惯。

把数学从抽象、严谨、枯燥的形式中解放出来,走出王宫,走下金字塔,走向生活,走向大众;彻底摆脱定义、定理、法则、公式及其证明,以及例题、习题的纯形式化的模式,以开放的体系再现数学的基本过程,再现数学与大自然和人类社会的千丝万缕的联系。吴正宪老师第一次教数学,用一个假期就把全套12册教材几乎全部做了一遍,还查阅了大量参考资料。这样大的决心和用功,有多少老师能做到?

不只是吴老师的数学课能让人激情澎湃,读她的书同样让我感到她是一个那么富有激情和热爱数学教育的老师,连带地我也更喜欢数学教师这个职业。从书中了解到一位特级教师的成长之路和教育思考,能学到很多教育的理念和具体做法,理论和实践结合同时充满感情的写法更易于为一线教师所喜欢和学习。

数学读后感 篇11

今天我阅读了《马小跳玩数学》中的路曼曼的考题和搞不清楚的时间。大家都去马小跳家玩数学游戏,路曼曼很不服气,想杀杀马小跳的威风,就对马小跳说:“我给你出一道题,不知道你能不能答出来?”“好啊,我接受挑战,”马小跳胸有成竹的说。路曼曼说:“今天是星期一,再过15天是星期几?再过25天是星期几?”马小跳对路曼曼说:“上课了,下课我告诉你。”老师在讲什么马小跳一点也没听进去,光想星期几了,下课了,马小跳对路曼曼说:“再过15天是星期二,再过25天是星期五。”算你蒙对了,路曼曼瞧也不瞧马小跳转身就走了。

张达上课迟到了,把老师都气病了,原来是张达算错了时间,看到张达父母给他留的纸条,马小跳帮助张达算出了准确的起床时间。

从这两个故事看出,马小跳是一个爱动脑经的孩子,遇到难题认真,仔细的观察,从中找到解决问题的办法。

数学读后感 篇12

《马小跳玩数学》是杨红樱的又一本大作,我特别喜欢。

在这本书里,主要讲的是马小跳教我们怎么去学奥数。书中的主人公有:笨女孩——安琪儿、数学小达人人——马小跳、又胖又可爱的唐飞、体育健将将——张达……

《马小跳玩数学》中,马小跳用生动的例子告诉我,怎么样去学数学,学好数学的方法。比如说拿到题目后第一步要先算什么,跟着算什么,如何正确的审题目,怎么样又快又正确的做好题目。最后还给我们小测试呢!

我特别爱在故事中学知识,而《马小跳玩数学》这本书中的主人公的性格正好和我的性格差不多,所以就更喜欢这本书了。

我希望杨红樱阿姨再出《马小跳玩语文》、《马小跳玩英语》、《马小跳玩科学》这类的书,能更加训练我们的大脑,把我们的大脑变的更为发达。

数学读后感 篇13

在这个暑假里,我看了一本叫《马小跳玩数学》,从中我学到了不少数学知识,还学到了生活中的很多数学题。

比如说:书中的人物唐飞想像福尔摩斯那样擅于断案。他就决定去外面寻找机会,于是就约了毛超和张达一起去。他们在公园里溜达时看到有一辆车子不小心撞到了一位老爷爷,而后急忙掉了个头,开走了。唐飞他们就赶过去把老爷爷扶起。唐飞想:这就是一个好机会,可是车子跑太快了,不知道车的车牌号。张达说:“我记得车牌号,是四位数,百位比千位多3、”毛超接着说:“十位是百位的2倍多1,个位比十位少2、”唐飞冥思苦想,终于想出来了,车牌号是:1497、最后,这辆车终于被警方抓获。

从这件事我知道了,生活中有一些小事,要我们去观察,去思考。

数学史读后感

  认真读完一本著作后,相信大家的收获肯定不少,此时需要认真地做好记录,写写读后感了。那么读后感到底应该怎么写呢?下面是我精心整理的数学史读后感范文,仅供参考,大家一起来看看吧。

  数学史读后感 篇1

  从小到大,在学习数学的过程中,接触大量的数学题,对数学的历史很少提及。《数学史》,一本专门研究数学的历史,娓娓道来,满足了我的好奇,把数学的发展过程展示出来。

  本书于1958年出版,作者J.F.斯科特。书中主要阐述西方数学的发展历史,但也专门用一章讲述印度和中国的数学发展。沿着时间轴,数学的发展经历了从初等到高等的过程。

  上古时代的古埃及人和古巴比伦人在平时的生产劳作中运用到了数学知识。

  古希腊人继承这些数学知识并不断拓展,成为数学史上一个“黄金时代”,涌现出毕达哥拉斯、柏拉图、亚里士多德、欧几里得、阿基米德,丢番图等一系列耳熟能详的名字。

  在黑暗的中世纪,数学发展处于停滞状态,而斐波那契的出现把数学带上复兴。

  文艺复兴,数学又进入一个蓬勃发展的时期,对解三次方程和四次方程、三角学、数学符号、记数方法的研究没有停步。“+”、“-”、“=”、“”、“>”的符号是在那个时候出现的,同时出了一名数学家韦达——韦达定理的发明者。

  7世纪,解析几何出现、力学兴起、小数和对数发明。这些都为微积分的发明奠定了基础。牛顿和莱布尼兹两位大师的研究,在数学领域开辟了一个新纪元。

  8世纪,为完善微积分中的概念,各路数学家在数学分析方法上有所发展。欧拉、拉格朗日,柯西等大师采用极限、级数等方法让微积分更加严谨。同时,非欧几何的理论开始萌芽。

  纵观全书,数学的发展是由一群人搭建起来的。前人的工作为后人的研究奠定了基础。后人在前人的工作上不断突破和创新。另外,数学中也有哲理,天地有大美而不言。当看到欧拉时,想到欧拉公式;看到韦达,想到韦达定理。公式很简洁,但把规律说清楚了。数学爱好者可以试着解里面的数学题,看看古人在当时是如何研究的,有的方法很笨拙,有的方法很巧妙。读完后,发现学习数学,会解几道数学题是不够的,还要学会去培养自己的思维。毕竟数学家的思维也会受到历史的局限。比如负数开根号,当时被人看来是无法接受,后来发明了虚数。

  历史是在不断地前进,数学的发展亦然。想知道数学和历史的跨界,那就来看《数学史》。

  数学史读后感 篇2

  今年的寒假出奇的漫长,在这漫长的寒假里,我读了一本我不怎么喜欢的书——《数学史》,为什么不喜欢呢?是因为我很多不懂,但是读着读着我就喜欢上了,《数学史》记录着人类数学历史发展的进程,读了它,我有一点肤浅的体会。

  体会一:数学源自于与生活的需要与发展。

  书中写到:人类在很久之前就已经具有识辨多寡的能力,从这种原始的数学到抽象的“数”概念的形成,是一个缓慢渐进的过程。人们为了方便于生活便有了算术,于是开始用手指头去“计算”,手指头计数不够就开始用石头,结绳,刻痕去计计数。例如:古埃及的象形数字;巴比伦的楔形数字;中国的甲骨文数字;希腊的阿提卡数字;中国筹算术码等等。虽然每种数字的诞生都有不同的背景与用途,以及运算法则,但都同样在人类历史发展和数学发展起着至关重要的作用,极大地推动了人类文明的前进。

  体会二:河谷文明和早期数学在历史的长河一样璀璨夺目。

  历史学家往往把兴起于埃及,美索不达米亚,中国和印度等地域的古文明称为“河谷文明”,早期的数学,就是在尼罗河,底格里斯河与幼发拉底河,黄河与长江,印度河与恒河等河谷地带首先发展起来的。埃及人留下来的两部草纸书——莱茵徳纸草书和莫斯科纸草书,还有经历几千年不倒的神秘金字塔,给后人诠释了古埃及人在代数几何的伟大成就,也给后人留下了辉煌的文化历史,而美索不达米亚在代数计算方面更是达到令人不可思议的程度。三次方程,毕达哥拉斯都是它创造的不朽的历史,在数学史上的地位是至关重要的。

  古人云:读史使人明智。读了《数学史》让我明白:数学源于生活,高于生活,最终服务于生活,运用于生活。

  数学史读后感 篇3

  最近一段时间,我花两天时间认真阅读了《这才是好读的数学史》这本书。这使得我对数学的发展有了更多的了解。

  通过这本书的内容,我了解到了数学是如何发展起来的,和一些为数学发展做出过巨大贡献的集体或个人。从这本书里,我知道了,数学是从古代中东地区发展起来的,在经过一段时间的发展后,之后便在古希腊,印度,之后再是伊斯兰帝国成长和发扬光大,后来再在欧洲得到进一步的发展。这本书还告诉了我,数学不是男性的天下,因为书里还提及了一些十分杰出的女性数学家,她们也为数学的发展做出了巨大的贡献。

  数学史是一个庞大的内容,可以说,自从文明开始,就有了人去研究和在生活之中使用数学,数学为人们的生活带去了巨大的便利。这本书在做表述数学史这一庞大的内容时,还将其尽量简化,简化成了几个板块并且还是用十分生动的有趣的语言,但这样也有缺点,就是有很多其他的事情没有介绍到,同时对于中国的数学,作者可能是没能找到太多相关的资料,所以并没有介绍太多。

  《这才是好读的数学史》这本书先是说了数学在各个古代文明中的发展,之后又讲了其中世界上有名的数学科目,并分别介绍了在这些方面出名的数学家,在后面又讲到了现代数学,通过这儿我知道了,我们现在所学的数学是非常古老的,几千年前的东西了,我们甚至连中世纪的水平都没达到,也由此可以看出数学的发展之快。数学在一次次的个性与进步当中,变得越来越深奥,难以理解。

  从千年前的1+1=2再到函数,再到微积分,再到现代数学,数学也开始运用在更多地方,像航天,工程等,所以说,只有学好数学才能为社会做出更大的贡献。

  数学史读后感 篇4

  又这样过了一个月了,尽管也就那么的几节数学史的课,可是,依然让我听得津津入味。认识数学历史,重温数学的发展道路。

  数学,似乎是一个枯燥的学科,但是,却是我们生活当中,最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平秤,是我们量化自己的必要工具。数学,就是这么的一个“工具箱”,前人用万分的努力汗水,把这个工具弄得更为人性化,更能让我们好好地使用。《数学史概论》这本书,真的让我对数学有了更深的认识。

  下面,我说说从《数学史概论》这本书,我又学到了什么。

  古希腊第一位伟大的数学家泰勒斯,曾利用太阳影子成功地计算出了金字塔的高度,实际上利用的就是相似三角形的性质。看吧,利用数学简单的思维,就能把本不可能完成的计算,就这样轻松解决了。在泰勒斯之后,以毕达哥拉斯为首的一批学者,对数学做出了极为重要的贡献。发现“勾股定理”,是他们最出色的成就之一,因此直到现在,西方人仍然把勾股定理称为“毕达哥拉斯定理”。正是这个定理,导致了无理数的发现。勾股定理,我相信很多人都很熟悉,可是又有多少人知道其中的具体的得来过程呢,从这条定理的证明,到后来导致了无理数的发现,我也相信未来,也一定有不少的理论在这个基础上,不断地被发现,被证明。在毕达哥拉斯之后,就是伟大的古希腊哲学家亚里士多德,他是人类科学发展史上最博学的人物之一,正是他所创立的逻辑学,对古希腊数学的发展产生了深远的影响。到了欧几里德时代,几何学已经成为一门相当完整的学科了。欧几里德的名著《几何原本》,是世界数学史上最伟大的著作之一。时至今日,我们在初中阶段学习的平面几何,大部分知识依然来源于古老的《几何原本》。在此之前,我只知道,亚里士多德在哲学方面为世界做出了很大的贡献,可是也不可否认,在几何方面他也对数学界做出的贡献不可磨灭。

  研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时通过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的.规律与文化本质。作为数学史研究的基该方法与手段,常有历史考证、数理分析、比较研究等方法。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。正是我们不断地为数学这座高楼添砖加瓦,它才能越立越高,越来越扎实,我也为可以这样学习和认识数学而感到满足!

  数学史读后感 篇5

  《数学史》这本书从希腊数学讲到了现代数学。我所感兴趣的部分有几个,一是关于以前的技术系统。我不知搭配人们是从何时开始计数的,但是当时的以十的幂为基数的计数系统以及六十进制的分数表示虽然不及现在的阿拉伯数字方便,但仍值得我们称赞。第二是希腊数学。虽然希腊人并不太在意应用数学,但是我觉得他们所研究的几何也是需要来源于生活的,是要从生活中去寻找,发现和提取的。也就是那个时候,欧几里得编出了影响深远的《几何原本》。我们现在所学的几何就与《几何原本》有着很大的关系,所以说这么看来的话,到现在我们也不过只是学到了数学的皮毛而已,许多的知识还是希腊数学。且其中的平行公设到了十九世纪仍然被研究。所以用影响深远来描述《几何原本》,应该不为过吧。同时,他们也对Π有了一些认识。由此可见,他们不仅从生活中提炼出了数学思想,而且还在上面添加了许多华丽的色彩,使得整个数学系统更加庞大,也让数学渐渐成为我们不敢仰望的存在。最后一个令我感兴趣的部分是代数。步入初中学习后,我们开始接触代数,但读了《数学史》我才知道代数竟然是十六、十七世纪所产生的,过了几个世纪,代数又成为了让人头疼的部分。并且在那个时候,他们就已经开始研究一些复杂的代数问题了。

  《数学史》向我们完整地展示了数学各个枝节细致的发展过程,这种过程被描写的也还算有趣(至少让我看得下去),虽然专业术语很多,阅读有障碍,但我不得不说,这确实是好读的数学史。

  数学史读后感 篇6

  《数学史》把数学几千年的发展浓缩为这本编年史中。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但并没有忽视中国文明、印度文明和阿拉伯文明的贡献,是一部经典的关于数学及创造这门学科的数学家们的单卷本历史著作。读了这本书,让我对数学学习有了新的认识和感悟,也让我更深层次的了解到数学的魅力和伟大,以及对前人的崇敬。

  数学源于人类的生活与发展。书中说,“人类在蒙昧时代就已具有识别事物多寡的能力,从这种原始的‘数觉’到抽象的‘数’概念的形成,是一个缓慢的,渐进的过程。”人类为了便于生活生产的需要,开始以手指头计数,手指数不够了,开始用石头计数,结绳计数,刻痕计数。又经过几万年的发展,随着几种文明的诞生与发展,记数系统在各种文明中都有了表示方式。古埃及的象形数字,巴比伦楔形数字,中国甲骨文数字,中国筹算数码等等。

  但是,为什么时至今日我们最习惯和擅长使用的是十进制计数的方式呢,难道就是因为老师们一代一代这样教出来的吗?很多人可能就是这样认为的,或者根本并未思考过。书里写到:“十进制在今天的普遍使用,只不过是解剖学上一次偶然事件的结果而已:我们中的大多数人,生来就有10个手指、10个脚趾。”经历过扳着手指头数数的过程,可能十进制早已在我们的心中留下了牢固的烙印。这就是一个知识的自然形成。

  通过对书中一些知识的阅读与思考,可以感觉到许多知识并不是那些先驱者凭空乱想出来的,是根据某种需要而研究出来的规律,而且是一些自然存在的规律,我们今天所学的知识正是这些已经总结出来的规律。“坐标系”这个词,对很多人来说可能并不陌生,即使他的数学知识已经“还给老师”很多年了,他也许还知道什么是“经度纬度”。为什么会出现这样的现象呢,也许是因为后者在生活中出现的更多一些,但其实两者的实质都是一样的。一个小故事说:“笛卡尔小时候在一次晨思时看见天花板上有一只苍蝇在爬,他的头脑中闪现出智慧的火花,如果知道苍蝇和相临两个墙壁的距离之间的关系,就能描述它在天花板上的位置与运动路线。”这个故事可能是编造的,但最终形成了我们今天所知的“笛卡尔坐标系”。这样的思想广泛的应用在天文,地理,物理等许多的学科中。

  我们在学习知识的时候是否思考过这个知识是由何而来的呢?是否注意到了在知识体系这张大网中,每个知识在什么位置上呢?难道我们真的可以单纯的认为每个知识都是孤立的考试对象吗?

  数学源于生活,高于生活,最终也将服务生活,运用于生活。在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这也许是由于我们的数学所教的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样也许可以激发学生的学习兴趣,也有助于学生对数学认识的深化,让更多的学生懂得数学。

  数学史读后感 篇7

  《数学史》一直是我最想读的一本书教学中我越来越觉得作为一个数学教师,数学史对我们有多少重要!于是我拜读了数学史。

  我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

  我知道了,第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是,希帕苏斯却被无情地抛进了大海。不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯!

  第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。

  第三次数学危机——我们听过这个名字——罗素,但是紧跟在他的身后的两个字却是那么刺眼——“悖论”。“罗素悖论”的出现使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础。与此同时,歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。数学似乎是再也站不起来了。是的,罗素的观点似乎真的很有道理,危机产生后,数学家纷纷提出自己的解决方案,比如ZF公理系统。这一问题的解决到现在还在进行中。罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!不过,我们不能蔑视“罗素悖论”,换种说法,不正是这个“悖论”引起了我们的思考吗?不正是这个“悖论”使我们更有创造精神吗?

  我知道了,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。

  数学史读后感 篇8

  在这个寒假,我阅读了一本名叫《这才是好读的数学史》这本书叫这个名字确实是名副其实,他为人们介绍了最全面的数学史,以及名人与数学之前的故事,还有各国数学的起源到发展。

  数学的形状和名称以及关于计数和算数运算的基本概念似乎是人类的遗产。早在公元前500年,数学就出现了,随着社会的不断发展,就需要一些方法来统计拖款欠税的数额等等,这时候数学就开始出现了。那时候的古埃及人用墨水在纸草上书写这种,这种材料是不易保存数千年的。大多数埃考古家挖掘的石头都是在神庙和陵墓附近,而不是在古城遗址。因此我们只能通过少量的资料来考察古埃及的数学发展史。

  许多古代文化发展了各式各样的数学,但是希腊数学家们是独一无二的,他们将逻辑推理和证明摆在数学的中心位置。希腊数学传统的保持和发展一直延续到公元400年。我们了解的希腊数学最早是欧几里得的《几何原本》,可我们也只了解这一本著名的书。希腊数学的优势便是几何,尽管希腊人也研究了整数,天文学,力学。但是根据古希腊几何学史学家的说法,最早的希腊数学家是600年前的泰勒斯,毕达哥拉斯都要比他晚一个世纪,当记录历史时,泰勒斯和毕达哥拉斯都成为了远古时期的神话级人物。

  又在20世纪初,希伯尔特提出了一系列重要问题,又在21世纪开始在克莱数学学院的带领下,选择7个数学课题,并且提供的100万美金来解决每一个问题数论则是另一个发展方向。正如我们的数学概念小史中解释的,费马的最后定理在1994年得到了证明。

  在今天的数学中涉及了许多不同的领域,所以我们要好好学习数学,并且多看有关数学的书,才能使我们的数学成绩突飞猛进。

  数学史读后感 篇9

  在任何起点上要想学好数学,我们需要先理解相关问题,然后才能赋予答案的意义

  ——引言

  数学,似乎是一个枯燥的学科,但却是我们生活里最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平称,是我们量化自己的必要工具...是的,数学是一个“工具箱”!那么,前人是怎么样把这个工具弄得更为人性化,更能让我们好好地使用呢?看完《这才是好读的数学史》后,我知道了许多。

  《这才是好读的数学史》介绍了数学从有记载的源头,到最初的算数,再到代数、几何等领域不断地深入化发展的历史过程。本书按照历史发展顺序,先后介绍了数学的开端,古希腊的数学,古印度的数学,古阿拉伯的数学,中世纪欧洲的数学,十五和十六世纪的代数学。

  在人类对于数学漫漫求索之路上,诞生了许多古代文化,而这些古代文化发展了各种各样的数学。其中,古代伊拉克的历史跨越了数千年,它包括了许多文明,如苏美尔,巴比伦,亚述,波斯和希腊文明。所偶有这些文明都了解并使用数学,但有很多变化。在这儿不得不提到的是古希腊数学。在此之前,各个文明运用数学仅仅是用来协助、解决一些简单的生活问题,有时不就此满足的人们也会有简单的探索,但希腊的数学家们是独一无二的,他们将逻辑推理和证明作为数学中心,也是正因如此,他们永远改变了运用数学的意义。

  数学源于生活却高于生活。如今的数学在生活中被广泛的运用,一起热爱数学吧!向为数学做出巨大奉献的前人们致敬!

  数学史读后感 篇10

  在这个寒假里,我接触到了《数学史》这本书。这本书介绍了数学从有记载的源头向最初的算术、几何、统计学、运筹学等领域不断深化发展的历史进程,以及如今数学的发展。

  这本书分为两篇,上篇是数学简史,下篇是数学概念小史。这本书中令我印象最深的数学家就是费马。皮埃尔·德·费马是属于文艺复兴时期传统的人,他处于重新发掘古希腊知识的中心,但是他却问了一个希腊人没有想到过要问的问题—费马大定理。这个问题困惑了世人358年,直到1994年的9月19日安德鲁·怀尔斯才宣布解开这个问题。这个问题起源于古希腊时代,它联系着毕达哥拉斯所建立的数学的基础和现代数学中各种最复杂的思想。费马大定理的故事和数学的历史有着密不可分的联系,它对于“是什么推动着数学发展”,或者是“是什么激励着数学家们”提供了一个独特的见解。费马大定理是一个充满勇气、欺诈、狡猾和悲惨的英雄传奇的核心,牵涉到数学王国中所有最伟大的英雄。巴里·梅休尔评论说,在某种意义上每个人都在研究费马问题,但只是零星地而没有把它作为目标,因为这个证明需要把现代数学的整个力量聚集起来才能完全解答。安德鲁所做的就是再一次把似乎是相隔很远的一些数学领域结合在一起。因而,他的工作似乎证明了自费马问题提出以来数学所经历的多元化过程是合理的。

  读了数学史后,我认为数学在我们的生活中扮演着不可或缺的角色,只有学好数学,学会应用数学,我们才能在这个正在向数字化发展的社会稳稳地站住脚跟。

本文标题: 读数学书的读后感1000字(数学书籍读后感)
本文地址: http://www.lzmy123.com/duhougan/405040.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    放大你的优点读后感250字(放大你的优点读后感400字)吴正宪给小学数学读后感(读《吴正宪给小学数学教师的建议》有感)
    Top