华应龙找次品优缺点华应龙找次品优缺点优点:让学生体会优化策略,记录推理过程,懂得化归思想,进而形成统计表格、观察表格、发现规律。缺点:第一,目标...
华应龙找次品优缺点
华应龙找次品优缺点
优点:让学生体会优化策略,记录推理过程,懂得化归思想,进而形成统计表格、观察表格、发现规律。
缺点:第一,目标太多。这节课综合了操作、观察、猜想、验证、归纳、推理等活动,再加上其内在规律的隐蔽性,一堂课下来,学生们一头雾水,教师也被绕得头昏脑涨。第二,心太急。这节课可以讲的内容很多,小学生该学些什么?优化的策略,将待测物品分成三份去称,是最主要的吗?应该直奔这一主题而去吗?太直接,太功利,一定会缺失了情趣,少了沿途的风景。第三,不甚明了。有的讲课老师对“找次品问题”的思想方法说不清道不明,只知道“分3份”,进一步的知道“尽可能平均分成3份”;有的老师知其然但不知其所以然。以其昏昏岂能使人昭昭?
优点:让学生体会优化策略,记录推理过程,懂得化归思想,进而形成统计表格、观察表格、发现规律。
缺点:第一,目标太多。这节课综合了操作、观察、猜想、验证、归纳、推理等活动,再加上其内在规律的隐蔽性,一堂课下来,学生们一头雾水,教师也被绕得头昏脑涨。第二,心太急。这节课可以讲的内容很多,小学生该学些什么?优化的策略,将待测物品分成三份去称,是最主要的吗?应该直奔这一主题而去吗?太直接,太功利,一定会缺失了情趣,少了沿途的风景。第三,不甚明了。有的讲课老师对“找次品问题”的思想方法说不清道不明,只知道“分3份”,进一步的知道“尽可能平均分成3份”;有的老师知其然但不知其所以然。以其昏昏岂能使人昭昭?
《找次品》说课稿
一、教材分析《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。新课程标准中指出:培养学生良好的数学思维能力是数学教学要达到的重要目标之一。因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。“找次品”的教学,共两课时,旨在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课是第一课时,以“找次品”这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。二、学情分析解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的“可能”、“一定”、可能性的大小、等知识点学生在此之前都已学过的。本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。三、教学目标知识技能目标:让学生初步认识“找次品”这类问题的基本解决手段和方法。过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及初步渗透优化思想。情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。四、教学方法1.加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。2.重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。五、教学过程一、课前互动,在这一环节中,我设计了与学生比赛撕纸的游戏,看谁沿折痕撕的最好,撕的次数最少,然后根据学生撕的情况,指出撕的好的就是正品,不好的就是次品,这里的次品我们一眼就能看出来,而在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做“找次品”,这节课我们就一起来研究如何利用天平“找次品”。板书课题:找次品(设计意图:本环节中,我主要想通过与学生的互动,消除学生对我的陌生感,同时,根据学生撕纸的好坏,能很好地引入课题,而撕好的纸片又是一个很好的学具,为下面的学习做好了准备。)二、1、出示3瓶钙片,说明:在这3瓶钙片中有一瓶少装了2颗,你能帮我找出是哪一瓶少装了吗?用什么方法?学生自由发言。在同学们说的这些方法中,你认为哪一种方法最好?为什么?[设计意图:在这一环节中,要引导学生根据次品的特点发现用天平“称”的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]出示天平,介绍原理。让学生说说怎样利用天平来找出这瓶钙片呢?学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]2、接着出示4瓶口香糖,让学生接着探究找次品的方法。在和同桌说一说,指名生说:①、4(2,2)、2(1,1)2次②、4(1,1,2)、2(1,1)2次③、4(1,1,1,1,)2次师:观察方法②和③,可以看出它们其实是同一种方法,而且分的份数③比②多,所以我们只写一种。在这强调,可以避免学生在下面的寻找中避免这种方法,师:同学们,老师想的和你们一样,不信就看看,看课件示意图,说一说和你说的那种方法一样?能否判断次品在哪个盘里?为什么?说一说哪种方法有可能一次把次品找出来?(让学生初步有最优方案的意识)二、“找次品”的解决方法1、同桌为一组合作:从5瓶口香糖中找出少装了的那瓶次品。(合作要求:,用5个纸片当做5瓶口香糖,在课桌上摆一摆,然后说一说你们是怎样称的?称了几次?其中一人负责作好记录。)2、指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:平衡:11次5(2,2,1)不平衡:2(1,1)2次在说第二种方法时,指名学生在黑板上板书过程,让学生能初步掌握这种记录方法,为下面学生独立进行记录做好铺垫,并提问学生:在用第一种称法称第一次时,你最希望看到什么情况?为什么?那么为什么还要称第二次呢?从这儿我们可以看出,用天平找次品的方法是多种多样的。[设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平来称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生纸片在课桌上模拟天平来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,并让学生试着书写第二种方法步便于学生理解每项数据、每种符号的含义,为后面的书写打下一定的基础。]观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?[设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解“至少称几次就一定能找到这个次品”的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]四、拓展提高在这一环节,我让学生去探究6瓶、7瓶、8瓶口香糖中,寻找次品的方法,首先是巩固学生对数字代表称的过程的理解,能更好的进行应用,同时利用简单的数字,让学生能很好的寻找找次品的方法,为下节课探究优化策略打下基础,五、总结。在这个环节,我只是让学生说一说找次品的方法是多样的,在找次品时,有可能第一次就找到,也有可能最后找到,所以我们要充分考虑最不利的情况,就是最后一次找到,那我们要用最好的方法、最少的次数找到次品。并对学生提出了让学生探究9、10、11或更大的数中寻找次品的方法,为下节课做好铺垫。板书设计:在板书上,我只是板书了3、4、5的找次品的方案,重点让学生明白每种方法的具体过程,
转自:易公教育官网
转自:易公教育官网
华应龙教案找次品教案实录
华应龙教案找次品教案实录一、谈话引入
1.实话实说——请吃糖
【为了活跃气氛,拉近与学生的感情,更主要地为了引入“次品”的概念,课前与学生这样谈话】
师:同学们仔细看看老师,能用几句简短的话描述一下老师的特点吗?
生1:老师中等身材,头发很平。
生2:老师脸很方,眼睛很小。
……
(老师用鼓励的目光激励学生发言,随便学生怎么说,说的越奇怪越好。不管学生说什么,老师都大肆表扬同时表示感谢,以激起其他学生想说话的欲望。待三四个学生发言后,老师话锋一转,提出第二个问题。)
师:同学们非常善于观察,这么短的时间就发现了老师这么多的特点。既然如此聪明,请允许我请教第二个问题,你们必须实话实说,说实话的本老师奖励吃糖。
(拿出一瓶真的木糖醇,此时学生都好奇地等着老师会出什么问题或者看着老师手里的木糖醇,老师故意矜持一会才说出问题。)
老师的问题是:你觉得我和你们原来的数学老师相比,谁更像一位优秀的数学老师?
(听课老师有的发出了笑声,学生们也都面面相觑,微笑着不知如何作答)
生1:老师您更优秀。
师:(笑着说)瞎说!你还没听过老师上课呢。
生2:(笑着说)两个都像。
师:(笑着说)不许都选,只能选一个。
生2:(有点无奈的)那就选我们原来的老师吧。
师:说得对!咱们今天表现的如此优秀,一定是原来老师的功劳。请吃糖!
(从木糖醇瓶中倒出一粒放入该学生手中,继续面向其他同学)谁还想吃糖,请实话数说。
生3:是我们原来的老师,因为他辛辛苦苦教了我们好几年。
师:(紧紧握着该学生的手)真是一个懂得感恩的孩子,说得对,请吃糖!
(从木糖醇瓶中再倒出一粒放入该学生手中)
【对学生而言,这是一个两难的问题。有说原老师的,有说现在的老师的,也会有两边讨好的。老师对两个都选的同学一定要逼其选其一,同时给选自己原来老师的两个学生每人一粒糖吃。】
师:(笑着说)同学们不用说了,老师已经知道结果了,应该是你们原来的老师更优秀。(话锋一转)当某个人或某项事物不足够好时,我们可以称之为——(拖长音,表示疑问)
生:次品
师:对,次品。(随机板书)
师:(很认真地说)在今天在座的这么多优秀教师中找出我这样的次品老师是很容易的,可有些时候,找次品就不那么容易了。刚才谁吃我糖了,请给我站起来!(假装生气)
【吃糖的学生刚才还美滋滋的呢,现在被迫站起来。】
师:(继续假装生气)谁让你们吃糖的?(学生苦笑)瞧瞧你们惹麻烦了吧。老师刚刚买了3瓶一样的木糖醇,其中一瓶就被你们“偷吃了”两粒,(老师出示3瓶一样的木糖醇),吃掉两粒的那一瓶重量自然就变得轻一些。重量变轻了我们就可以称之为——(拖长音,表示疑问。)
生:次品(很快接上)
师:对。怎样很快地知道哪一瓶是次品呢?(示意吃糖的学生坐下)如果用天平称来称,至少几次才能保证找到呢?请独立思考。
(学生独立思考约30秒钟)
2.初步建立基本思维模型。
师:谁来说说至少要几次才能保证找到?
(此时学生基本有两种意见:部分或大部分人认为需要2次,部分思维好的同学会认为1次足矣。老师请认为1次的同学上台展示)
师:你见过天平吗?
生:见过。
师:天平长什么样子?(学生茫然。老师走过去示意学生把双手向左右两边伸平,笑曰:这就是一架美丽的天平。该生不自然地笑了,全体同学则会心地一笑。)
师:别人都认为要2次,你说1次就行了。别瞎说!怎么称的?称给我们瞧瞧!
(该生演示:任意拿两瓶放在天平左右两边,两手伸平)
生:如果是这种情况,剩下的那一瓶就是次品。
师:如果天平左右两边不平呢?
(该生再演示:天平左高右低的情况。)
生:如果是这种情况,左边高的那一瓶就是次品。
师:还有一种情况呢?
(该生马上反应过来,立刻演示:天平左低右高的情况。)
生:如果是这种情况,右边高的那一瓶就是次品。
(面向全体同学)
师:大家看明白了吗?刚才这位同学任意从3瓶中拿出2瓶放在天平的左右两边,如果平衡了,次品在哪?
众生:剩下的那一瓶。
师:如果天平有一边翘起呢?
众生:翘起的那一瓶。
师:不管是哪一种情况,几次就可以找到次品了呀?
众生:1次。
师:1次果然就可以找到次品是哪一瓶了,表扬给我们带来这样思考的那位同学。
(掌声想起)
师:谁还能像刚才那位同学一样给我们演示一下怎么1次就能找到次品了呢?
【3瓶中有1瓶次品,用天平称来称,至少1次就可以找到。是找次品问题最基本的思维模型,一定要让每个学生都清晰。所以,一位同学演示后,再请一位同学上台演示,以加深每个同学的印象。】
(生再次演示,老师适时强调)
师:开始认为需要2次的同学,现在清楚了吗?3瓶当中有1瓶次品,用天平称称,至少几次就可以保证找到?
众生响亮回答:1次。
3.拓展延伸,引导猜想。
师:3瓶当中有1瓶次品,用天平称称,至少1次就可以保证找到。如果不是3瓶,假如今天来听课的老师每人1瓶,大概有两千多瓶吧。我们暂且估计有2187瓶。(随机板书)如果2187瓶中也有1瓶次品(轻),用天平称称,至少几次才能保证找到呢?请你猜一猜!
(停顿约20秒,找两三个同学回答)
生1:2186次。
生2:2185次。
生3:一千多次。
生4:729次。
师:2187瓶中有1瓶次品,用天平称称,怎么也要好两千多次、一千多次或好几百次,都是这么认为吗?
众生点头:是。
师:如果你们都是这么认为,今天这节课就非常有研究的必要。我们今天这节课就来研究,如果真有2187瓶木糖醇,其中1瓶是次品(轻),用天平称称,究竟至少几次才能保证找到,好吗?
众生:好!
二、组织探究
1.体会化繁为简
师:要解决这个问题,大家觉得2187这个数据是不是有点大呀?
众生:是。
师:解决问题时,面对一些比较庞大的数据,我们往往可以采取一种策略,谁知道是什么?
生1:简化
生2:化简
师:对!解决问题时,面对一些比较庞大的数据,我们往往可以采取一种策略——化繁为简(随机板书),也就是把数据转化地小一些,就是两位同学说的化简。简到什么程度呢?3瓶刚才我们研究过了,现在我们研究几瓶好呢?
生1:4瓶。
生2:5瓶。
师:5瓶和我们书上的例1刚好一模一样,我们就先来研究如果5瓶当中有1瓶次品,用天平称称,至少几次保证找到?好吗?
众生:好!
2.第一次探究
师:请先独立思考。可以拿出5枚硬币动手试一试。
(约1分钟后)
师:同桌同学可以小声交流交流。
(约1分钟后)
师:谁来说一说至少几次保证能找到?
生1:1次。
生2:2次。
生3:3次。
… …
师:你是怎么称的?请描述称的过程?
生1:我在天平左右两边各放1瓶,如果有翘起,就找到了。
师:这种情况是有可能的,但能保证吗?如果天平平衡了怎么办?你先请坐!
(生1意识到自己考虑问题的不足,带着思考坐下!)
生2:我也在天平左右两边各放1瓶,如果平衡了,说明这两瓶中没有次品;就从剩下的3瓶中再任意选两瓶放在天平的左右两边,如果平衡了,剩下的那瓶就是次品,如果有一边翘起,翘起的那端就是次品。一共称了2次。
师:他的方法可行吗?
众生:可行。
师:刚才这位同学的称法,开始时,把5瓶分成了怎样的3份呀?
生:(1、1、3)
师:真聪明!1和1要称一次,剩下的3瓶中再找1瓶次品,就像我们课刚刚开始的问题一样,当然也要1次,一共就是2次。这种称法如果用数学符号简单地记录下来,可以写成这样,用“ ”表示称一次(板书):
5→(1、1、3)→(1、1、1)〓 2次
可以吗?
众生:可以。
师:有没有也是2次,但称法不一样的?
生:我在天平左右两边各放2瓶,如果平衡了,说明这两瓶中没有次品,剩下的那瓶就是次品,但这不能保证。如果有一边翘起,说明次品在翘起的那一端里,然后再把翘起那一端的2个放在天平左右两边,再称一次,一定可以找到。一共称了2次。
师:真了不起!同样也是称2次,称法还真的不同。这位同学的称法如果也用数学符号简单地记录下来,可以写成这样:(板书)
5→(2、2、1)→(1、1、)〓 2次
行吗?
众生:行!
师:比较两位同学的称法,过程不同,但结果一致!除了结果相同外,还有没有发现别的共同点?
(学生略作思考,老师随机点出)
师:老师发现刚才的两种称法,不管开始时如何分组,在每一次称的时候,天平左右两边始终保持瓶数一样,这是为什么呀?为什么不天平一边放2瓶,一边放3瓶呢?
生:瓶数不一样,比较不出来。
师:由于正品和次品的差距往往很小,所以当瓶数不等时,用天平称量时是无法判断的。找次品自然要追求次数越少越好,所以这种“浪费”的称法我们当然不提倡。
师:(笑着对说要3次的同学说话)3次当然能称的出来,但并不是至少的方案,明白了吗?
生点头示意明白。
3.第二次探究
师:5瓶我们研究过了,离2187瓶还差的远呢。再靠近点,接下来我们研究多少瓶呢?
生1:8瓶。
生2:9瓶。
生3:10瓶。
师:同学们说的都可以,但我们上课时间有限,在一位数中9最大,我们来研究9瓶好不好?(其实例2就是9瓶)
众生:好!
师:谁再来明确一下问题?
生:9瓶木糖醇中有1瓶是次品(轻),用天平称称,至少几次保证找到?
师:问题已经很明确,请先独立思考。可以拿9枚硬币分组试一试,也可以像老师一样用数学符号画一画。
(师静静地巡视约1分钟)
师:请前后桌4位同学一组,讨论交流你们认为至少几次才能找到次品?
(师参与讨论约2分钟)
师:老师刚才在下面听到有的同学说要4次,有的说要3次,还有的说2次就行。到底至少要几次呢?看来需要交流交流。先从多的来,谁刚才说要4次的?请说说你是怎样称的?
生:我天平左右两边各放1个,每次称2个,这样4次就一定可以找到。
(师随着学生的表述相机板书)
9→(1、1、1、1、1、1、1、1、1)〓 4次
师:他的称法可行吗?
生:可行但不是次数最少的。
师:好!让我们一起来听听次数再少一些的称法。3次该怎样称?
生:我把9分成4、4、1三组,先称两个4,如果天平平衡了,剩下的1瓶就是次品,但这是很幸运的。如果不平,把翘起的那4瓶再2个对2个称,如果平……(老师礼貌地打断学生的话)
师:这时会出现平衡吗?(提醒:次品就在这4瓶里,天平左右两边各放2瓶)
生:(明白后立刻改口)一定会有一边翘起,然后再把翘起的2瓶天平两边各放1个,再称1次,共3次就可以找到次品是哪一瓶。
(师随着学生的表述相机板书)
9→(4、4、1)→(2、2)→(1、1)〓 3次
师:他的称法可行吗?
生:可行。我也是3次,但称法与他不一样。
师:真的吗?同样是3次,称法还可以不一样?赶快说给我们听听。
生:我把9分成2、2、2、2、1五组,先称两个2,如果有一边翘起,再称1次就可以了,但这是幸运的;如果天平平衡了,再称剩下的两个2,如果天平还是平衡了,剩下的1瓶就是次品,但这也是很幸运的。如果不平衡,再把翘起的2个分开,天平左右两边各1个,再称1次就一定找到次品了。这样也是3次保证找到了次品。
(师随着学生的表述相机板书)
9→(2、2、2、2、1)→(2、2、2、2、1 )→(1、1)〓 3次
师:还真不错!同样是3次保证找到,称法还真不一样。
师:刚才好像还有人说2次就够了,不太可能吧?是谁说的?
(说2次的学生起立)
师:别人都是4次、3次的,你说2次就行,还坚持吗?
(学生坚持)
师:好!我们大家刚才辛苦了老半天才弄明白至少要3次才能保证找到次品,他竟然坚持说2次就够了,难道我们……请认真听听他是怎么称的!如果他说错了,我们要罚他唱首歌。
(故意这样说,以引起学生都来关注他的2次是怎样称的)
生:我把9分成三组,每组3个。先称两个3,如果天平有一边翘起,次品就在翘起的那3瓶里;如果天平平衡了,次品就在剩下的3瓶里。不管怎样,接下来就只要研究3瓶就可以了。前面刚学过,从3瓶里找1瓶次品,称1次就够了。这样2次就保证找到了次品。
(师随着学生的表述相机板书)
9→(3、3、3)→(1、1、1 )〓 2次
师:听得懂他的称法吗?
(有部分学生不敢大声回答,请刚才的学生再重复一遍)
师:现在都听懂了吧!这个同学的称法完全可行,称2次就解决了问题。为什么我们别的称法次数就比他多呢?我们的问题出在哪儿?这个同学的高明又在哪呢?请仔细观察黑板上的四种称法,看谁能最快发现其中的奥秘?
9→(1、1、1、1、1、1、1、1、1)〓 4次
9→(4、4、1)→(2、2)→(1、1)〓 3次
9→(2、2、2、2、1)→(2、2、2、2、1 )→(1、1)〓 3次
9→(3、3、3)→(1、1、1 )〓 2次
(学生观察思考约1分钟,老师给予适当暗示)
生:2次的称法一开始把9瓶分成了3组,每组3个。这样称1次,就可以断定次品在哪一组里。
师:说得好!把9瓶分成了3组,每组3个,也就是把物品总数均分3份,这样称1次,就可以淘汰2份6瓶,从而让剩下的瓶数变得最少,自然总的次数就会少下来。而4次的称法,称1次后,最多只能淘汰2瓶;3次的两种称法,称第一次后,也最多只能淘汰4瓶,所以最终的次数就会相对多起来。
4.第三次探究
师:刚才9瓶中找1瓶次品(轻),那位同学一开始把9瓶平均分成3份来称,最后的次数最少。是不是所有的可以均分成3份的物品总数,一开始都平均分成3份来称,最后的次数也是最少呢?刚才那位同学是否偶然呢?我们还需要怎么办?
生:继续验证。
师:(握着同学的手)说得好!仅仅一个例子不足以推广,我们还需要进一步验证。验证多少呢?比9大一些,可以均分3份的?
(有学生立刻回答)
生:12.
师:好的!我们就来研究12。如果12瓶中有1瓶是次品(轻),用天平称称,至少几次保证找到?请先用刚才那位同学的思路,均分3份来操作。看看至少要几次?
生说师板书:
12→(4、4、4)→(2、2)→(1、1)〓 3次
师:按照刚才那位同学的思维模式推理,至少要3次才能保证找到。3次是否真的就是最少的次数吗?有没有比3次还少的呢?如果有,说明刚才的那位同学纯属偶然。请2人一小组,拼凑12枚硬币操作操作,或者用笔画一画,看看有没有更少的可能?
(学生思考讨论,老师巡视参与,约1~2分钟后交流)
生1:我是均分2份做的,也是3次。
(师随着学生的表述相机板书)
12→(6、6)→(3、3)→(1、1)〓 3次
师:有没有比刚才的3次少?
生1:没有。
师:谁找到比3次还少的称法了?
生2:我没找到,但我一开始均分4分来做的,最后也是3次。
(师随着学生的表述相机板书)
12→(3、3、3、3)→(3、3、3、3)→(1、1、1)〓 3次
师:两位同学真不错,再次给我们展示了最终结果一样时,中间过程的丰富多彩。但我们都没有找到比3次还少的方案。如果再研究下去,我们会发现次数只会越来越多。比如:
12→(2、2、2、2、2、2)→(2、2、2、2、2、2)→(2、2、2、2、2、2、)→(1、1)〓 4次。其实刚才那位同学的思维模式并非偶然,真的具有一定的规律性。时间关系,我们不再继续验证。
师:刚才那位同学的思维模式是什么?
众生:物品总数如果能均分3份,就把物品尽量平均分成3份来操作。
师:为什么呢?
生:把物品总数平均分成3份来操作,这样称1次就可以断定次品在哪一份里,每一次都最大限度地淘汰,最后的次数自然就会少下来。
三、强化训练
师:通过刚才的探究,我们已经找到了内在的思维规律,现在老师想考验一下咱们班同学的数学感觉如何,看看谁的反应快?如果不是12瓶,而是27瓶中有1瓶次品(轻),用天平称称,至少几次保证找到?
(提醒运用刚才发现的思维模式,马上有学生举手)
生:3次。
师:(故作惊讶!)别乱说,不可能吧?27瓶呀蛮多的,3次怎么可以保证找到?
生:我把27瓶平均分成3份,每份9瓶;称1次就可以推断次品在哪个9瓶里。然后9瓶就像刚才那位同学那样再均分3份来称,2次就够了。我这里只增加了1次,所以3次就找到了。
(师随着学生的表述相机板书)
27→(9、9、9)→(3、3、3)→(1、1、1)〓 3次
师:真聪明!把27瓶平均分成3份,每份的9瓶,也可以假设看成一个超大瓶。这样,27瓶就转化为了3个超大瓶,称1次,自然就可以断定次品在哪个超大瓶里,也就是哪个9里。然后把9再平均分成3份,以此类推,每称1次,都淘汰两份,剩下一份。最后的次数一定就是至少的。
师:如果不是27瓶,而是81瓶呢?
(有学生脱口说要9次,可能是想到了九九八十一)
师:(不动声色)嗯!有可能。是至少吗?
(马上有学生反应过来)
生:4次就够了。
师:(微笑着)请问怎么称?
生:把81瓶平均分成3份,每份27瓶,称1次就可以知道次品在哪个超大大瓶27里。27瓶刚才是3次,所以81瓶中有1瓶次品,用天平称称,4次就够了。
师:真了不起!他也学会转化了。如果不是81瓶,而是243瓶呢?
(立刻有学生举手)
生:5次。跟上面一样,把243均分3份,只比81瓶多称了1次。所以是5次。
师:反应真快!有没有哪位同学猜到老师接下来会出哪个数?
生:729。
师:(握着学生举的手表扬他)真是英雄所见略同!老师真的要出729,如果真有729瓶,其中1瓶是次品(轻),用天平称称,至少几次保证找到?
众生:6次。
师:接下来就到哪个数了?
众生:2187。
师:现在大声地告诉老师,如果真有2187瓶,其中1瓶是次品,用天平称称,至少几次保证找到?
众生:7次。
师:课刚开始时猜需要2186次的是那位同学,请问此时此刻有什么想说的吗?
(该生起立,笑着无言以对)
师:是什么让这位同学无言以对?从两千多瓶中找一瓶次品,起初我们本能地感觉怎么也要两千多、一千多或好几百次,其实7次足矣。前后相差之大,远远超出了我们的想像。这就是数学思考的魅力。也正是这种无穷的魅力,才让我们这位同学感觉无言以对。其实不止是这位同学,刚开始时,我们都没有想到啊!
(轻轻摸摸该生的头,示意他坐下)
四、全课总结
1.全课小结
师:(指着板书上的“次品”俩字)请问我们今天上的什么课?
全体学生:(自然地答道)次品课。
师:(故作生气状)瞎说!你才上次品课呢。
(顺手在“次品”前写上一个大大的“找”字,全体听课老师则会心地哈哈大笑)
2.提出问题
今天我们找次品的物品总数不管是9、12,还是27、81、243……,都是3的倍数,也就是可以直接均分三份来操作,如果物品总数不是3的倍数,又该怎样操作呢?这个问题,需要我们下节课来继续研究。
1.实话实说——请吃糖
【为了活跃气氛,拉近与学生的感情,更主要地为了引入“次品”的概念,课前与学生这样谈话】
师:同学们仔细看看老师,能用几句简短的话描述一下老师的特点吗?
生1:老师中等身材,头发很平。
生2:老师脸很方,眼睛很小。
……
(老师用鼓励的目光激励学生发言,随便学生怎么说,说的越奇怪越好。不管学生说什么,老师都大肆表扬同时表示感谢,以激起其他学生想说话的欲望。待三四个学生发言后,老师话锋一转,提出第二个问题。)
师:同学们非常善于观察,这么短的时间就发现了老师这么多的特点。既然如此聪明,请允许我请教第二个问题,你们必须实话实说,说实话的本老师奖励吃糖。
(拿出一瓶真的木糖醇,此时学生都好奇地等着老师会出什么问题或者看着老师手里的木糖醇,老师故意矜持一会才说出问题。)
老师的问题是:你觉得我和你们原来的数学老师相比,谁更像一位优秀的数学老师?
(听课老师有的发出了笑声,学生们也都面面相觑,微笑着不知如何作答)
生1:老师您更优秀。
师:(笑着说)瞎说!你还没听过老师上课呢。
生2:(笑着说)两个都像。
师:(笑着说)不许都选,只能选一个。
生2:(有点无奈的)那就选我们原来的老师吧。
师:说得对!咱们今天表现的如此优秀,一定是原来老师的功劳。请吃糖!
(从木糖醇瓶中倒出一粒放入该学生手中,继续面向其他同学)谁还想吃糖,请实话数说。
生3:是我们原来的老师,因为他辛辛苦苦教了我们好几年。
师:(紧紧握着该学生的手)真是一个懂得感恩的孩子,说得对,请吃糖!
(从木糖醇瓶中再倒出一粒放入该学生手中)
【对学生而言,这是一个两难的问题。有说原老师的,有说现在的老师的,也会有两边讨好的。老师对两个都选的同学一定要逼其选其一,同时给选自己原来老师的两个学生每人一粒糖吃。】
师:(笑着说)同学们不用说了,老师已经知道结果了,应该是你们原来的老师更优秀。(话锋一转)当某个人或某项事物不足够好时,我们可以称之为——(拖长音,表示疑问)
生:次品
师:对,次品。(随机板书)
师:(很认真地说)在今天在座的这么多优秀教师中找出我这样的次品老师是很容易的,可有些时候,找次品就不那么容易了。刚才谁吃我糖了,请给我站起来!(假装生气)
【吃糖的学生刚才还美滋滋的呢,现在被迫站起来。】
师:(继续假装生气)谁让你们吃糖的?(学生苦笑)瞧瞧你们惹麻烦了吧。老师刚刚买了3瓶一样的木糖醇,其中一瓶就被你们“偷吃了”两粒,(老师出示3瓶一样的木糖醇),吃掉两粒的那一瓶重量自然就变得轻一些。重量变轻了我们就可以称之为——(拖长音,表示疑问。)
生:次品(很快接上)
师:对。怎样很快地知道哪一瓶是次品呢?(示意吃糖的学生坐下)如果用天平称来称,至少几次才能保证找到呢?请独立思考。
(学生独立思考约30秒钟)
2.初步建立基本思维模型。
师:谁来说说至少要几次才能保证找到?
(此时学生基本有两种意见:部分或大部分人认为需要2次,部分思维好的同学会认为1次足矣。老师请认为1次的同学上台展示)
师:你见过天平吗?
生:见过。
师:天平长什么样子?(学生茫然。老师走过去示意学生把双手向左右两边伸平,笑曰:这就是一架美丽的天平。该生不自然地笑了,全体同学则会心地一笑。)
师:别人都认为要2次,你说1次就行了。别瞎说!怎么称的?称给我们瞧瞧!
(该生演示:任意拿两瓶放在天平左右两边,两手伸平)
生:如果是这种情况,剩下的那一瓶就是次品。
师:如果天平左右两边不平呢?
(该生再演示:天平左高右低的情况。)
生:如果是这种情况,左边高的那一瓶就是次品。
师:还有一种情况呢?
(该生马上反应过来,立刻演示:天平左低右高的情况。)
生:如果是这种情况,右边高的那一瓶就是次品。
(面向全体同学)
师:大家看明白了吗?刚才这位同学任意从3瓶中拿出2瓶放在天平的左右两边,如果平衡了,次品在哪?
众生:剩下的那一瓶。
师:如果天平有一边翘起呢?
众生:翘起的那一瓶。
师:不管是哪一种情况,几次就可以找到次品了呀?
众生:1次。
师:1次果然就可以找到次品是哪一瓶了,表扬给我们带来这样思考的那位同学。
(掌声想起)
师:谁还能像刚才那位同学一样给我们演示一下怎么1次就能找到次品了呢?
【3瓶中有1瓶次品,用天平称来称,至少1次就可以找到。是找次品问题最基本的思维模型,一定要让每个学生都清晰。所以,一位同学演示后,再请一位同学上台演示,以加深每个同学的印象。】
(生再次演示,老师适时强调)
师:开始认为需要2次的同学,现在清楚了吗?3瓶当中有1瓶次品,用天平称称,至少几次就可以保证找到?
众生响亮回答:1次。
3.拓展延伸,引导猜想。
师:3瓶当中有1瓶次品,用天平称称,至少1次就可以保证找到。如果不是3瓶,假如今天来听课的老师每人1瓶,大概有两千多瓶吧。我们暂且估计有2187瓶。(随机板书)如果2187瓶中也有1瓶次品(轻),用天平称称,至少几次才能保证找到呢?请你猜一猜!
(停顿约20秒,找两三个同学回答)
生1:2186次。
生2:2185次。
生3:一千多次。
生4:729次。
师:2187瓶中有1瓶次品,用天平称称,怎么也要好两千多次、一千多次或好几百次,都是这么认为吗?
众生点头:是。
师:如果你们都是这么认为,今天这节课就非常有研究的必要。我们今天这节课就来研究,如果真有2187瓶木糖醇,其中1瓶是次品(轻),用天平称称,究竟至少几次才能保证找到,好吗?
众生:好!
二、组织探究
1.体会化繁为简
师:要解决这个问题,大家觉得2187这个数据是不是有点大呀?
众生:是。
师:解决问题时,面对一些比较庞大的数据,我们往往可以采取一种策略,谁知道是什么?
生1:简化
生2:化简
师:对!解决问题时,面对一些比较庞大的数据,我们往往可以采取一种策略——化繁为简(随机板书),也就是把数据转化地小一些,就是两位同学说的化简。简到什么程度呢?3瓶刚才我们研究过了,现在我们研究几瓶好呢?
生1:4瓶。
生2:5瓶。
师:5瓶和我们书上的例1刚好一模一样,我们就先来研究如果5瓶当中有1瓶次品,用天平称称,至少几次保证找到?好吗?
众生:好!
2.第一次探究
师:请先独立思考。可以拿出5枚硬币动手试一试。
(约1分钟后)
师:同桌同学可以小声交流交流。
(约1分钟后)
师:谁来说一说至少几次保证能找到?
生1:1次。
生2:2次。
生3:3次。
… …
师:你是怎么称的?请描述称的过程?
生1:我在天平左右两边各放1瓶,如果有翘起,就找到了。
师:这种情况是有可能的,但能保证吗?如果天平平衡了怎么办?你先请坐!
(生1意识到自己考虑问题的不足,带着思考坐下!)
生2:我也在天平左右两边各放1瓶,如果平衡了,说明这两瓶中没有次品;就从剩下的3瓶中再任意选两瓶放在天平的左右两边,如果平衡了,剩下的那瓶就是次品,如果有一边翘起,翘起的那端就是次品。一共称了2次。
师:他的方法可行吗?
众生:可行。
师:刚才这位同学的称法,开始时,把5瓶分成了怎样的3份呀?
生:(1、1、3)
师:真聪明!1和1要称一次,剩下的3瓶中再找1瓶次品,就像我们课刚刚开始的问题一样,当然也要1次,一共就是2次。这种称法如果用数学符号简单地记录下来,可以写成这样,用“ ”表示称一次(板书):
5→(1、1、3)→(1、1、1)〓 2次
可以吗?
众生:可以。
师:有没有也是2次,但称法不一样的?
生:我在天平左右两边各放2瓶,如果平衡了,说明这两瓶中没有次品,剩下的那瓶就是次品,但这不能保证。如果有一边翘起,说明次品在翘起的那一端里,然后再把翘起那一端的2个放在天平左右两边,再称一次,一定可以找到。一共称了2次。
师:真了不起!同样也是称2次,称法还真的不同。这位同学的称法如果也用数学符号简单地记录下来,可以写成这样:(板书)
5→(2、2、1)→(1、1、)〓 2次
行吗?
众生:行!
师:比较两位同学的称法,过程不同,但结果一致!除了结果相同外,还有没有发现别的共同点?
(学生略作思考,老师随机点出)
师:老师发现刚才的两种称法,不管开始时如何分组,在每一次称的时候,天平左右两边始终保持瓶数一样,这是为什么呀?为什么不天平一边放2瓶,一边放3瓶呢?
生:瓶数不一样,比较不出来。
师:由于正品和次品的差距往往很小,所以当瓶数不等时,用天平称量时是无法判断的。找次品自然要追求次数越少越好,所以这种“浪费”的称法我们当然不提倡。
师:(笑着对说要3次的同学说话)3次当然能称的出来,但并不是至少的方案,明白了吗?
生点头示意明白。
3.第二次探究
师:5瓶我们研究过了,离2187瓶还差的远呢。再靠近点,接下来我们研究多少瓶呢?
生1:8瓶。
生2:9瓶。
生3:10瓶。
师:同学们说的都可以,但我们上课时间有限,在一位数中9最大,我们来研究9瓶好不好?(其实例2就是9瓶)
众生:好!
师:谁再来明确一下问题?
生:9瓶木糖醇中有1瓶是次品(轻),用天平称称,至少几次保证找到?
师:问题已经很明确,请先独立思考。可以拿9枚硬币分组试一试,也可以像老师一样用数学符号画一画。
(师静静地巡视约1分钟)
师:请前后桌4位同学一组,讨论交流你们认为至少几次才能找到次品?
(师参与讨论约2分钟)
师:老师刚才在下面听到有的同学说要4次,有的说要3次,还有的说2次就行。到底至少要几次呢?看来需要交流交流。先从多的来,谁刚才说要4次的?请说说你是怎样称的?
生:我天平左右两边各放1个,每次称2个,这样4次就一定可以找到。
(师随着学生的表述相机板书)
9→(1、1、1、1、1、1、1、1、1)〓 4次
师:他的称法可行吗?
生:可行但不是次数最少的。
师:好!让我们一起来听听次数再少一些的称法。3次该怎样称?
生:我把9分成4、4、1三组,先称两个4,如果天平平衡了,剩下的1瓶就是次品,但这是很幸运的。如果不平,把翘起的那4瓶再2个对2个称,如果平……(老师礼貌地打断学生的话)
师:这时会出现平衡吗?(提醒:次品就在这4瓶里,天平左右两边各放2瓶)
生:(明白后立刻改口)一定会有一边翘起,然后再把翘起的2瓶天平两边各放1个,再称1次,共3次就可以找到次品是哪一瓶。
(师随着学生的表述相机板书)
9→(4、4、1)→(2、2)→(1、1)〓 3次
师:他的称法可行吗?
生:可行。我也是3次,但称法与他不一样。
师:真的吗?同样是3次,称法还可以不一样?赶快说给我们听听。
生:我把9分成2、2、2、2、1五组,先称两个2,如果有一边翘起,再称1次就可以了,但这是幸运的;如果天平平衡了,再称剩下的两个2,如果天平还是平衡了,剩下的1瓶就是次品,但这也是很幸运的。如果不平衡,再把翘起的2个分开,天平左右两边各1个,再称1次就一定找到次品了。这样也是3次保证找到了次品。
(师随着学生的表述相机板书)
9→(2、2、2、2、1)→(2、2、2、2、1 )→(1、1)〓 3次
师:还真不错!同样是3次保证找到,称法还真不一样。
师:刚才好像还有人说2次就够了,不太可能吧?是谁说的?
(说2次的学生起立)
师:别人都是4次、3次的,你说2次就行,还坚持吗?
(学生坚持)
师:好!我们大家刚才辛苦了老半天才弄明白至少要3次才能保证找到次品,他竟然坚持说2次就够了,难道我们……请认真听听他是怎么称的!如果他说错了,我们要罚他唱首歌。
(故意这样说,以引起学生都来关注他的2次是怎样称的)
生:我把9分成三组,每组3个。先称两个3,如果天平有一边翘起,次品就在翘起的那3瓶里;如果天平平衡了,次品就在剩下的3瓶里。不管怎样,接下来就只要研究3瓶就可以了。前面刚学过,从3瓶里找1瓶次品,称1次就够了。这样2次就保证找到了次品。
(师随着学生的表述相机板书)
9→(3、3、3)→(1、1、1 )〓 2次
师:听得懂他的称法吗?
(有部分学生不敢大声回答,请刚才的学生再重复一遍)
师:现在都听懂了吧!这个同学的称法完全可行,称2次就解决了问题。为什么我们别的称法次数就比他多呢?我们的问题出在哪儿?这个同学的高明又在哪呢?请仔细观察黑板上的四种称法,看谁能最快发现其中的奥秘?
9→(1、1、1、1、1、1、1、1、1)〓 4次
9→(4、4、1)→(2、2)→(1、1)〓 3次
9→(2、2、2、2、1)→(2、2、2、2、1 )→(1、1)〓 3次
9→(3、3、3)→(1、1、1 )〓 2次
(学生观察思考约1分钟,老师给予适当暗示)
生:2次的称法一开始把9瓶分成了3组,每组3个。这样称1次,就可以断定次品在哪一组里。
师:说得好!把9瓶分成了3组,每组3个,也就是把物品总数均分3份,这样称1次,就可以淘汰2份6瓶,从而让剩下的瓶数变得最少,自然总的次数就会少下来。而4次的称法,称1次后,最多只能淘汰2瓶;3次的两种称法,称第一次后,也最多只能淘汰4瓶,所以最终的次数就会相对多起来。
4.第三次探究
师:刚才9瓶中找1瓶次品(轻),那位同学一开始把9瓶平均分成3份来称,最后的次数最少。是不是所有的可以均分成3份的物品总数,一开始都平均分成3份来称,最后的次数也是最少呢?刚才那位同学是否偶然呢?我们还需要怎么办?
生:继续验证。
师:(握着同学的手)说得好!仅仅一个例子不足以推广,我们还需要进一步验证。验证多少呢?比9大一些,可以均分3份的?
(有学生立刻回答)
生:12.
师:好的!我们就来研究12。如果12瓶中有1瓶是次品(轻),用天平称称,至少几次保证找到?请先用刚才那位同学的思路,均分3份来操作。看看至少要几次?
生说师板书:
12→(4、4、4)→(2、2)→(1、1)〓 3次
师:按照刚才那位同学的思维模式推理,至少要3次才能保证找到。3次是否真的就是最少的次数吗?有没有比3次还少的呢?如果有,说明刚才的那位同学纯属偶然。请2人一小组,拼凑12枚硬币操作操作,或者用笔画一画,看看有没有更少的可能?
(学生思考讨论,老师巡视参与,约1~2分钟后交流)
生1:我是均分2份做的,也是3次。
(师随着学生的表述相机板书)
12→(6、6)→(3、3)→(1、1)〓 3次
师:有没有比刚才的3次少?
生1:没有。
师:谁找到比3次还少的称法了?
生2:我没找到,但我一开始均分4分来做的,最后也是3次。
(师随着学生的表述相机板书)
12→(3、3、3、3)→(3、3、3、3)→(1、1、1)〓 3次
师:两位同学真不错,再次给我们展示了最终结果一样时,中间过程的丰富多彩。但我们都没有找到比3次还少的方案。如果再研究下去,我们会发现次数只会越来越多。比如:
12→(2、2、2、2、2、2)→(2、2、2、2、2、2)→(2、2、2、2、2、2、)→(1、1)〓 4次。其实刚才那位同学的思维模式并非偶然,真的具有一定的规律性。时间关系,我们不再继续验证。
师:刚才那位同学的思维模式是什么?
众生:物品总数如果能均分3份,就把物品尽量平均分成3份来操作。
师:为什么呢?
生:把物品总数平均分成3份来操作,这样称1次就可以断定次品在哪一份里,每一次都最大限度地淘汰,最后的次数自然就会少下来。
三、强化训练
师:通过刚才的探究,我们已经找到了内在的思维规律,现在老师想考验一下咱们班同学的数学感觉如何,看看谁的反应快?如果不是12瓶,而是27瓶中有1瓶次品(轻),用天平称称,至少几次保证找到?
(提醒运用刚才发现的思维模式,马上有学生举手)
生:3次。
师:(故作惊讶!)别乱说,不可能吧?27瓶呀蛮多的,3次怎么可以保证找到?
生:我把27瓶平均分成3份,每份9瓶;称1次就可以推断次品在哪个9瓶里。然后9瓶就像刚才那位同学那样再均分3份来称,2次就够了。我这里只增加了1次,所以3次就找到了。
(师随着学生的表述相机板书)
27→(9、9、9)→(3、3、3)→(1、1、1)〓 3次
师:真聪明!把27瓶平均分成3份,每份的9瓶,也可以假设看成一个超大瓶。这样,27瓶就转化为了3个超大瓶,称1次,自然就可以断定次品在哪个超大瓶里,也就是哪个9里。然后把9再平均分成3份,以此类推,每称1次,都淘汰两份,剩下一份。最后的次数一定就是至少的。
师:如果不是27瓶,而是81瓶呢?
(有学生脱口说要9次,可能是想到了九九八十一)
师:(不动声色)嗯!有可能。是至少吗?
(马上有学生反应过来)
生:4次就够了。
师:(微笑着)请问怎么称?
生:把81瓶平均分成3份,每份27瓶,称1次就可以知道次品在哪个超大大瓶27里。27瓶刚才是3次,所以81瓶中有1瓶次品,用天平称称,4次就够了。
师:真了不起!他也学会转化了。如果不是81瓶,而是243瓶呢?
(立刻有学生举手)
生:5次。跟上面一样,把243均分3份,只比81瓶多称了1次。所以是5次。
师:反应真快!有没有哪位同学猜到老师接下来会出哪个数?
生:729。
师:(握着学生举的手表扬他)真是英雄所见略同!老师真的要出729,如果真有729瓶,其中1瓶是次品(轻),用天平称称,至少几次保证找到?
众生:6次。
师:接下来就到哪个数了?
众生:2187。
师:现在大声地告诉老师,如果真有2187瓶,其中1瓶是次品,用天平称称,至少几次保证找到?
众生:7次。
师:课刚开始时猜需要2186次的是那位同学,请问此时此刻有什么想说的吗?
(该生起立,笑着无言以对)
师:是什么让这位同学无言以对?从两千多瓶中找一瓶次品,起初我们本能地感觉怎么也要两千多、一千多或好几百次,其实7次足矣。前后相差之大,远远超出了我们的想像。这就是数学思考的魅力。也正是这种无穷的魅力,才让我们这位同学感觉无言以对。其实不止是这位同学,刚开始时,我们都没有想到啊!
(轻轻摸摸该生的头,示意他坐下)
四、全课总结
1.全课小结
师:(指着板书上的“次品”俩字)请问我们今天上的什么课?
全体学生:(自然地答道)次品课。
师:(故作生气状)瞎说!你才上次品课呢。
(顺手在“次品”前写上一个大大的“找”字,全体听课老师则会心地哈哈大笑)
2.提出问题
今天我们找次品的物品总数不管是9、12,还是27、81、243……,都是3的倍数,也就是可以直接均分三份来操作,如果物品总数不是3的倍数,又该怎样操作呢?这个问题,需要我们下节课来继续研究。
本文标题: 华应龙《找次品》读后感(《找次品》 看到别人看不到的)
本文地址: http://www.lzmy123.com/duhougan/380372.html
如果认为本文对您有所帮助请赞助本站