阿基米德为什么发现浮力定律,这个定律的发现有什么深远意义浮力定律是由阿基米德发现的。,阿基米德是古希腊杰出的数学和力学奠基人,自...
阿基米德为什么发现浮力定律,这个定律的发现有什么深远意义
阿基米德是古希腊杰出的数学和力学奠基人,自幼聪颖好学,是一位善于观察思考并重理论与实践相结合的科学家。他对待科学研究的态度是勇于革新、勇于创造而又严肃认真,曾在几何学、静力学以及机械的民明创造方面都取得了巨大的成就。不幸的是在公元前212年,叙拉古被罗马军队占领,正在沙地上画着几何图形思考问题的阿基米德被闯进来的无知的罗马士兵杀死,终年75岁。
关于浮力的发现还流传着一个有趣的故事。相传叙拉古的希洛王叫工匠做一顶纯金王冠。金王冠做得极其精致,可是有人告发说,工匠在制作王冠时用银子偷换了金子。国王叫阿基米德想办法在不损害王冠的情况下可出王冠里是否掺了假。于是,阿基米德便冥思苦想考虑如何解决这个难题。有一天,他到澡堂去洗澡。当他躺进澡盆时,发现自己身体越往下沉,盆里溢出的水就越多。而他则感到身体越轻。突然产,阿基米德欣喜若狂地跳出了澡盆,甚至忘记了穿衣服就直奔王宫,边跑边喊:“找到了,找到了!”阿基米德找到了什么?他找到的不仅是鉴定金王冠是否掺假的方法,而且是重要的科学原理,即浸没有水中的物体受到一个向上的浮力,浮力的大小等于它所排开水的体积,据此计算了王冠中金和银的含量。因为重量相同的物体,密度大的体积就小。金子的密度大于银子,因而金块和银块同重时,金块的体积必然小于银块体积,如把同重的金块和银块放入水中,那么金块排出的水就比银块排出的水少,而王冠排出的水在这两者之间,这就证明了王冠不是纯金的。他又利用数学计算,确定了王冠中掺了银子,而且数量与阿基米德计算的结果一样。也有人认为,阿基米德分加紧称出浸在水中的金、银和王冠的重量,由此测定了它们在水中减少的重量,从这些数据中,他轻易地找到了答案。
浮力
1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力。方向:竖直向上;原因:液体对物体的上、下压力差。
2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。
即F浮=G液排=ρ液gV排。
(V排表示物体排开液体的体积)
3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差
4.当物体漂浮时:F浮=G物 且 ρ物<ρ液 当物体悬浮时:F浮=G物 且 ρ物=ρ液
当物体上浮时:F浮>G物 且 ρ物<ρ液 当物体下沉时:F浮<G物 且 ρ物>ρ液
浮力F浮
(N) F浮=G物—G视 G视:物体在液体的重力
浮力F浮
(N) F浮=G物 此公式只适用
物体漂浮或悬浮
浮力F浮
(N) F浮=G排=m排g=ρ液gV排 G排:排开液体的重力
m排:排开液体的质量
ρ液:液体的密度
V排:排开液体的体积
(即浸入液体中的体积)
初中物理知识点总结:浮力的利用
浮力的利用
(1)轮船:
工作原理:要使密度大于水的材料制成能够漂浮在水面上的物体必须把它做成空心的,使它能够排开更多的水。
排水量:轮船满载时排开水的质量。单位t由排水量m可计算出:排开液体的体积V(排)=m/ρ;排开液体的重力G(排)=mg;轮船受到的浮力F(浮)=mg轮船和货物共重G=mg。
(2)潜水艇:
工作原理:潜水艇的下潜和上浮是靠改变自身重力来实现的。
(3)气球和飞艇:
工作原理:气球是利用空气的浮力升空的。气球里充的是密度小于空气的气体如:氢气、氦气或热空气。为了能定向航行而不随风飘荡,人们把气球发展成为飞艇。
(4)密度计:
原理:利用物体的漂浮条件来进行工作。
构造:下面的铝粒能使密度计直立在液体中。
刻度:刻度线从上到下,对应的液体密度越来越大。
漂浮问题"五规律"
规律一:物体漂浮在液体中,所受的浮力等于它受的重力;
规律二:同一物体在不同液体里,所受浮力相同;
规律三:同一物体在不同液体里漂浮,在密度大的液体里浸入的体积小;
规律四:漂浮物体浸入液体的体积是它总体积的几分之几,物体密度就是液体密度的几分之几;
规律五:将漂浮物体全部浸入液体里,需加的竖直向下的外力等于液体对物体增大的浮力。
浮力计算题方法总结:
(1)、确定研究对象,认准要研究的物体。
(2)、分析物体受力情况画出受力示意图,判断物体在液体中所处的'状态(看是否静止或做匀速直线运动)。
(3)、选择合适的方法列出等式(一般考虑平衡条件)。
计算浮力方法:
①量法:F(浮)=G-F(用弹簧测力计测浮力)。
②力差法:F(浮)=F(向上)-F(向下)(用浮力产生的原因求浮力)
③浮、悬浮时,F(浮)=G(二力平衡求浮力;)
④F(浮)=G(排)或F(浮)=ρ(液)V(排)g(阿基米德原理求浮力,知道物体排开液体的质量或体积时常用)
⑤根据浮沉条件比较浮力(知道物体质量时常用)
压强公式:
P=F/s,式中p单位是:帕斯卡,1帕=1N/m2,表示是物理意义是1m2的面积上受到的压力为1N。
公式:p=F/S(压强=压力÷受力面积)
p-压强-帕斯卡(单位:帕斯卡,符号:Pa)
F-压力-牛顿(单位:牛顿,符号:N)
S-受力面积-平方米
F=PS(压力=压强×受力面积)
S=F/P(受力面积=压力÷压强)
(压强的大小与受力面积和压力的大小有关)
压力和压强
任何物体能承受的压强有一定的限度,超过这个限度,物体就会损坏。
物体由于外因或内因而形变时,在它内部任一截面的两方即出现相互的作用力,单位截面上的这种作用力叫做压力。
一般地说,对于固体,在外力的作用下,将会产生压(或张)形变和切形变。因此,要确切地描述固体的这些形变,我们就必须知道作用在它的三个互相垂直的面上的力的三个分量的效果。这样,对应于每一个分力Fx、Fy、Fz、以作用于Ax、Ay、Az三个互相垂直的面,应力F/A有九个不同的分量,因此严格地说应力是一个张量。
由于流体不能产生切变,不存在切应力。因此对于静止流体,不管力是如何作用,只存在垂直于接触面的力;又因为流体的各向同性,所以不管这些面如何取向,在同一点上,作用于单位面积上的力是相同的。由于理想流体的每一点上,F/A在各个方向是定值,所以应力F/A的方向性也就不存在了,有时称这种应力为压力,在中学物理中叫做压强。压强是一个标量。压强(压力)的这一定义的应用,一般总是被限制在有关流体的问题中。
垂直作用于物体的单位面积上的压力。若用P表示压强,单位为帕斯卡(1帕斯卡=1牛顿/平方米)
压强的意义
⑴受力面积一定时,压强随着压力的增大而增大。(此时压强与压力成正比)
⑵同一压力作用在支承物的表面上,若受力面积不同,所产生的压强大小也有所不同。受力面积小时,压强大;受力面积大时,压强小。
⑶压力和压强是截然不同的两个概念:压力是支持面上所受到的并垂直于支持面的作用力,跟支持面面积大小无关。
压强是物体单位面积受到的压力。
⑷压力、压强的单位是有区别的。压力的单位是牛顿,踉一般力的单位是相同的。压强的单位是一个复合单位,它是由力的单位和面积的单位组成的。在国际单位制中是牛顿/平方米,称“帕斯卡”,简称“帕”。
浮力解决了哪些实际问题?
要全面啊!!利用浮力的关键是调节重力与浮力的关系,若保持浮力不变,可改变自身重;若重力不变可改变排开液体或气体的体积。
轮船
(1)工作原理:物体漂浮在水面的原理工作的。
(2)利用把密度比水大的钢材制成空心的使它排开更多的水,增大可利用的浮力。
(3)轮船在河里和海里都是浮体,因而所受浮力相同,根据阿基米德原理,它在海水里比在河水里浸入的体积小。
(4)排水量:轮船满载货物时排开水的质量。
F最大浮力=G船+G满载时货物重
潜水艇
(1)原理:靠改变自身重来实现上浮和下潜的
(2)潜水艇自重的改变取决于水舱内充水或放水的多少。
气球和飞艇
(1) 气球和飞艇内充有密度小于空气的气体——氢气、氦气、热空气等。
(2)原理:利用空气的浮力,通过改变自身体积来实现上升和下降的。
(3)气球上升过程中,空气的密度逐渐变小,当浮力等于重力时,气球就不再上升了。
(4)气球上升过程中,大气压逐渐减小,会导致气球内气压大于气球外气压,气球膨胀,若超过了气球外壳承受的能力,气球就要破裂。
浮力应用
对浮力的认识和应用,是古代流体力学研究的重要内容。在这方面,中国古人积累了丰富的实践经验。
早在先秦时期,古人就对物体的浮沉特性有所认识,并在生产实践中有十分巧妙的应用。例如在《考工记·矢人》篇中,“矢人”在确定箭杆各部分的比例时,采用的方法是:
“水之,以辨其阴阳;夹其阴阳,以设其比;夹其比,以设其羽。”
就是说,把削好的箭杆投入水中,根据箭杆各部分在水中浮沉情况,判定出其相应的密度分布,根据这一分布来决定箭的各部分的比例,然后再按这个比例来装设箭尾的羽毛。这种根据箭杆各部分浮沉程度判定其相应质量分布的方法是合乎科学的,也是十分巧妙的。
《考工记·轮人》篇在规定车轮的制作规范时,也应用了水的浮力。为确保车轮“揉辐必齐,平沈必均”,“轮人”采用的办法是:“水之,以眡其平沈之均也。”意思是说,要测量木制轮子各处质量是否均匀,只要把它放在水中,测量其各处浮沉程度是否一致即可。如果浮沉程度一致(“平沈”),轮子各处质量分布必然是均匀的(“必均”)。
先秦时期人们不仅能应用浮力定性判定物体质量分布,还能应用浮力定量测定物体的重量。晋代的《符子》一书记载了这样一个故事:
“朔人献燕昭王以大豕,曰‘养奚若’。……王乃命豕宰养之。十五年,大如沙坟,足如不胜其体。王异之,令衡官桥而量之,折十桥,豕不量。命水官浮舟而量之,其重千钧。”
“浮舟量之”,就是利用水的浮力来测定这头其重无比的大猪的重量。如果《符子》的记载真实的话,这是我国古人定量利用水的浮力的一个绝妙的例子。由此发展下去,就是脍炙人口的曹冲称象的传说了。
古人在从经验角度利用浮力的同时,也从理论上对物体浮沉条件加以探讨。例如先秦典籍《墨经》就曾讨论过这一问题:
《经下》:“荆之大,其沈浅也。说在具。”
《经说下》:“荆:沈,荆之贝也,则沈浅,非荆浅也。若易,五之一。”
这里的“荆”,同形,指形体。“沈”,即沉。“具”,为器具,可泛指中空而有容积的物体。“贝”,当为“具”之误。《经》的意思是说:物体的形体虽然很大,但因其是中空的,所以在水中下沉浅。《经说》则解释道:中空的物体在水中沉下的部分浅,这并非物体本身浅,而是沉下水的部分所受的浮力等于全部物体的重量,这就像在市场上交换东西,五件甲物可以换来一件乙物一样。从这些话语来看,墨家对物体在水中的沉浮条件,已经有所认识。当然,由于《墨经》用词的简略,对这一条也还存在不同的解释,但无论如何,我们说墨家已认识到物体所受浮力跟它沉入水下部分的体积有关,这总是可以成立的。
《淮南子·齐俗训》则以竹子为例,对此加以论述:
“夫竹之性浮,残以为牒,束而投之水则沈,失其体也。”
竹子是中空的,投于水中,自然浮起,故说“竹之性浮”。把完整的竹子破开,削成竹牒,束成一捆,投入水中,则下沉,原因在于“失其体也”。即是说,竹子重量可以做到不变,但做成竹牒以后,其体积比起原来大为减少,投入水中以后所受浮力也大为减少,于是就不能浮起。显然,《淮南子》已经意识到物体所受浮力与其排水体积之间有着密切联系。
应该指出的是,无论《墨经》还是《淮南子》,都没有从定量角度揭示物体所受浮力与其排水量之间的关系。在其他中国古籍中,也未见到别人对此有清晰的论述。不过,这并不影响古人去巧妙地利用浮力。《宋史·方技传》记载了当时一个和尚怀丙巧妙利用浮力的一个例子:
“河中府浮梁,用铁牛八维之,一牛且数万斤。后水暴涨绝梁,牵牛没于河。募能出之者,怀丙以二大舟实土,夹牛维之。用大木为权衡状钓牛。徐去其土,舟浮牛出。”
僧怀丙之所为,是利用浮力起重,可谓构思巧妙。古人利用浮力的例子还可以举出许多,诸如建造船只、船坞、浮囊、战争中发明“水雷”等,这里不再多说。
从物理学的角度来看,还需要一提的是古人利用浮力对液体比重的判定。古人在实践中发现,同一物体,浸在不同的液体中,它所受的浮力也不一样。唐代段成式作的《酉阳杂俎》,其《前集》卷十九提到:
“莲实,莲入水必沉,唯煎盐碱卤能浮之。”
造成这一现象的原因,显然是由于水和盐卤的浓度不同。受此事实的启发,古人发明了通过观察莲子的浮沉情况判定液体浓度的方法。李约瑟的《中国科学技术史》一书,在考证盐水浓度的测定法时,专门引用了11世纪姚宽所写的一段记事。姚宽在台州做官时,曾因调查盐商舞弊,每日用莲子试验盐卤。他选择较重的莲子供用,倘若十粒莲子,能由盐卤中浮出三四粒,就是浓盐卤。浮起的数目不足三粒,这盐卤就是稀薄不良的。若全体莲子都沉在卤底,则该盐卤稀薄至极,即使经过蒸发,也难以得到食盐。这种方法不但巧妙利用浮力,而且还包含了一定的数理统计思想。
元代陈椿在《熬波图咏》一书中记载了一种专门用于测盐卤的器具,也是用莲子测定的,叫做莲管:
“莲管之法,采石莲,先于淤泥内浸过,用四等卤分浸四处:最咸■卤浸一处,三分卤浸一分水浸一处,一半水浸一半卤浸一处,一分卤浸二分水浸一处。后用一竹管盛此四等所浸莲子四枚于竹管内,上用竹丝隔定竹管口,不令莲子漾出。以莲管吸卤试之,视四莲子之浮沉,以别卤咸淡之等。”
用这种仪器,已经可以对盐卤浓度进行分等了。这种“莲管”原理与现代的浮子式比重计相近,其中四枚莲子相当于比重不同的色球,根据这些小球的浮沉情况便可判断液体的比重。
明末方以智在《物理小识》卷七中记载了他的老师王虚舟对金、银、铜、铁在汞液中浮沉情况的观察:
“虚舟子曰:《本草》言金银铜铁置汞上则浮,此非也。铜铁则浮,金银则沉。金银取出必轻耗,以其蚀也。”
王虚舟的观察是准确的,这反映了古人对不同比重物体沉浮状态研究的深入。这段话还记述了汞对金、银的腐蚀作用,在化学史上也是有价值的。
如果认为本文对您有所帮助请赞助本站