有没有哪些书详细的论述了微积分学的发展史 或者牛顿和莱布尼茨之间的恩怨纠缠的

发布时间: 2022-08-30 09:01:50 来源: 励志妙语 栏目: 经典文章 点击: 87

微积分的起源与发展历史根据记载,牛顿对微积分问题的研究开始于1664年,此时他十分认真地研读了笛卡尔的巨著《几何学》,并且对书中...

有没有哪些书详细的论述了微积分学的发展史 或者牛顿和莱布尼茨之间的恩怨纠缠的

微积分的起源与发展历史

根据记载,牛顿对微积分问题的研究开始于1664年,此时他十分认真地研读了笛卡尔的巨著《几何学》,并且对书中求曲线切线的方法十分着迷,求知欲旺盛的牛顿迫切寻求一种更有效更一般的方法来解决这一问题。

思索了两年之后,在1666年10月,牛顿撰写了数学史上第一遍微积分论文《流数短论》,历史性地提出了“流数”这一概念。牛顿将“流数”对应与速度,即位移函数对时间的微商,然后又以速度对时间的微商来作为加速度。深思熟虑三年之后,牛顿又完成了第二篇论文《运用无穷多项方程的分析学》,此文给出了因变量对自变量求瞬时变化率的一般方法,而且还证明了面积可以通过求变化率的逆过程得到,这实际上已经非常接近微积分基本定理(即牛顿-莱布尼茨公式)。1671年,牛顿在第三篇论文《流数术与无穷级数》中完善了第一篇论文的内容,使得论述与方法都更加清晰。又过了5年,牛顿写出了他最成熟的微积分论文《曲线求积论》,进一步完善了对流数的理解并清晰叙述了微积分基本定理,还给出了他自己发明的一系列记号。

至此,一代巨人完成了创立微积分的伟大壮举。然而由于自己保守内敛的性格,牛顿长期没有公开发表自己的论文,仅为他少数好友所知。直到1687年,在好友哈雷的鼓励与要求之下,牛顿才出版了巨著《自然哲学的数学原理》,直到这时,牛顿关于微积分的工作才公诸于世。正是牛顿的迟疑,引发了牛顿和莱布尼茨谁才是“微积分之父”的百年之争,更是造成了英国科学界和欧洲大陆科学界的长期分隔。

简述微积分发展史

1、三国后期的刘徽发明了著名的“割圆术”,即把圆周用内接或外切正多边形穷竭的一种求圆周长及面积的方法。“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”不断地增加正多边形的边数,进而使多边形更加接近圆的面积,在我国数学史上算是伟大创举。

1、十七世纪上半叶,几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。

2、天文学家开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式。

3、此外解析几何创始人——法国数学家笛卡尔的代数方法对于微积分的发展起了极大的推动。法国大数学家费马在求曲线的切线及函数的极值方面贡献巨大。

4、英国科学家牛顿开始关于微积分的研究,他受了沃利斯的《无穷算术》的启发,第一次把代数学扩展到分析学。1665年牛顿发明正流数术(微分),次年又发明反流数术。之后将流数术总结一起,并写出了《流数简述》,这标志着微积分的诞生。

扩展资料:

微积分成熟完善:

微积分学在牛顿与莱布尼茨的时代逐渐建立成型,但是任何新的数学理论的建立,在起初都是会引起一部分人的极力质疑,微积分学同样也是。

由于早期微积分学的建立的不严谨性,许多不安分子就找漏洞攻击微积分学,其中最著名的是英国主教贝克莱针对求导过程中的无穷小(Δx既是0,又不是0)展开对微积分学的进攻,由此第二次数学危机便拉开了序幕。

危机出现之后,许多数学家意识到了微积分学的理论严谨性,陆续的出现大批杰出的科学家。

大数学家柯西建立了接近现代形式的极限,把无穷小定义为趋近于0的变量,从而结束了百年的争论,并定义了函数的连续性、导数、连续函数的积分和级数的收敛性(与布尔查诺同期进行)。

参考资料来源:百度百科-微积分



1、微分早期

早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。古希腊数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽。

2、极限思想

早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。

3、微积分思想

微积分思想虽然可追溯到古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。

扩展资料:

关于微积分发明权的最初争议:

牛顿早在1676年就知道莱布尼兹的工作,但此时的他并没有表现出任何对优先权问题的担心或竞争心理。直到1687年以前,他都没有公开发表任何关于流数术的论文或专著,哪怕是在1684年莱布尼兹抢先发表了论文以后。

反倒是在1687年,他首次在《自然哲学之数学原理》第一版中透露出关于流数术的一鳞半爪时,特意在下方注释道:

十年前在我与最权威的几何学家G.G.莱布尼兹进行的后来被中断的系列通信中,我展示了我提出的定义最大和最小的方法……阁下回信说他也在研究这样一种方法,他的方法除了用词及其众所周知的形式以外,和我的几乎没有什么不同。

牛顿在这段话中用 “最权威的”来形容莱布尼兹,并尊称其为“阁下”,对与莱布尼兹英雄所见略同的得意之情跃然纸上。

不过牛顿本人的态度并不能代表他的全部英国同胞。曾作为牛顿微积分思想启发者之一的老一代数学家沃利斯就对此很不以为然。作为一位狂热的不列颠沙文主义者,沃利斯一生热衷于证明不列颠民族相对于其他民族在智力上的优越性。

随着“莱布尼兹微积分”在欧洲大陆声望日隆,而牛顿更早的工作却迟迟不见发表,本应属于英国数学家的学术荣誉眼见着正被德国人 “窃取”殆尽,为此,沃利斯不但多次以师长和朋友的身份致信牛顿,措辞颇有些严厉地敦促牛顿尽快发表关于流数术的论文;

而且身体力行,在自己的著作中不断为牛顿及其流数术摇旗呐喊。特别是在1695年出版的著作中,在谈到牛顿流数术与莱布尼兹微积分的内在一致性时,老数学家意味深长地提及:

1676年牛顿发给包括他在内的几位英国数学家介绍流数术的两封最初的信件,“也被 (几乎一字不易地)传递给了莱布尼兹,他(牛顿)在信中向莱布尼兹讲解了他在十多年前就已经发明的方法”——这是关于莱布尼兹剽窃牛顿成果的第一次暗示。

参考资料来源:中国社会科学网-关于微积分的恩恩怨怨(下)

参考资料来源:百度百科-微积分学

微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微分的互逆关系 。最后一步是由牛顿、莱布尼兹完成的。前两阶段的工作,欧洲的大批数学家一直追朔到古希腊的阿基米德都作出了各自的贡献。对于这方面的工作,古代中国毫不逊色于西方,微积分思想在古代中国早有萌芽,甚至是古希腊数学不能比拟的。公元前7世纪老庄哲学中就有无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。刘徽公元263年首创的割圆术求圆面积和方锥体积,求得 圆周率约等于3 .1416,他的极限思想和无穷小方法,是世界古代极限思想的深刻体现。
微积分思想虽然可追朔古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究。
南宋大数学家秦九韶于1274年撰写了划时代巨著《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500多年。
特别是13世纪40年代到14世纪初,在主要领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键。 中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门。可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键一步落伍了。
微积分的诞生
微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作 者以及技术人员不可缺少的工具。
微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。早在古希腊时期,欧多克斯提出了穷竭法。这是微积分的先驱,而我国庄子的《天下篇》中也有 “ 一尺之锤,日取其半,万世不竭 ” 的极限思想,公元 263 年,刘徽为《九间算术》作注时提出了 “ 割圆术 ” ,用正多边形来逼近圆周。这是极限论思想的成功运用。
积分概念是由求某些面积、体积和弧长引起的,古希腊数学家要基米德在《抛物线求积法》中用究竭法求出抛物线弓形的面积,人没有用极限,是 “ 有限 ” 开工的穷竭法。但阿基米德的贡献真正成为积分学的萌芽。
微分是联系到对曲线作切线的问题和函数的极大值、极小值问题而产生的。微分方法的第一个真正值得注意的先驱工作起源于 1629 年费尔玛陈述的概念,他给同了如何确定极大值和极小值的方法。其后英国剑桥大学三一学院的教授巴罗又给出了求切线的方法,进一步推动了微分学概念的产生。前人工作终于使牛顿和莱布尼茨在 17 世纪下半叶各自独立创立了微积分。 1605 年 5 月 20 日,在牛顿手写的一面文件中开始有 “ 流数术 ” 的记载,微积分的诞生不妨以这一天为标志。牛顿关于微积分的著作很多写于 1665 - 1676 年间,但这些著作发表很迟。他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来著名的牛顿-莱而尼茨公式。
牛顿是那个时代的科学巨人。在他之前,已有了许多积累:哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的。
牛顿于 1642 年出生于一个贫穷的农民家庭,艰苦的成长环境造就了人类历史上的一位伟大的科学天才,他对物理问题的洞察力和他用数学方法处理物理问题的能力,都是空前卓越的。尽管取得无数成就,他仍保持谦逊的美德。
如果说牛顿从力学导致 “ 流数术 ” ,那莱布尼茨则是从几何学上考察切线问题得出微分法。他的第一篇论文刊登于 1684 年的《都市期刊》上,这比牛顿公开发表微积分著作早 3 年,这篇文章给一阶微分以明确的定义。
莱布尼茨 1646 年生于莱比锡。 15 岁进入莱比锡大学攻读法律,勤奋地学习各门科学,不到 20 岁就熟练地掌握了一般课本上的数学、哲学、神学和法学知识。莱布尼茨对数学

关于微积分的著作

最好是数学家所著
牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

希望有所帮助
《流数法和无穷级数》,《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。
百度一下,应该有

微积分历史发展史

从微积分成为一门学科来说,是在17世纪,但是积分的思想早在古代就已经产生了。
积分学早期史
公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。
中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分学的思想主要有两点:割圆术及求体积问题的设想。
微积分产生
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
数学首先从对运动(如天文、航海问题等)的研究中引出了一个基本概念,在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数——或变量间关系——的概念。紧接着函数概念的采用,产生了微积分,它是继欧几里得几何之后,全部数学中的一个最大的创造。围绕着解决上述四个核心的科学问题,微积分问题至少被十七世纪十几个最大的数学家和几十个小一些的数学家探索过。其创立者一般认为是牛顿和莱布尼茨。

在牛顿和莱布尼茨作出他们的冲刺之前,微积分的大量知识已经积累起来了。十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题) 。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现时数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
牛顿的发展
牛顿在1671年写了《流数术和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。
牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
莱布尼茨
德国的莱布尼茨(又译“莱布尼兹”)是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。
1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现今我们使用的微积分通用符号就是当时莱布尼茨精心选用的。
本文标题: 有没有哪些书详细的论述了微积分学的发展史 或者牛顿和莱布尼茨之间的恩怨纠缠的
本文地址: http://www.lzmy123.com/jingdianwenzhang/208607.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    世界史上有哪些变法算是不流血的变法呢「南海一号」的什么创举,标志着中国水下考古已处于世界前列 这有何意义
    Top