假设π和e代数无关,即不存在系数都是整数的非零多项式使得f(π,e)=0,怎么证明π和e的四则运算是超越数?反证法。假设π和e的...
假设π和e代数无关,即不存在系数都是整数的非零多项式使得f(π,e)=0,怎么证明π和e的四则运算是超越数?
假设π和e的四则运算形成的数不是超越数,那么,π和e的四则运算形成的数是代数式。
该数是某个代数方程的解的集合。经过合并同类项,可以得到一个多项式f(pi)=0或f(e)=0,和假设矛盾。
除了圆周率以外还有哪些数是无限不循环小数
e=1+1/1!+1/2!+1/3!+...+1/(n-1)!+1/n!,n是正整数。
n!是阶乘的意思,n!=n*(n-1)*(n-2)*......*3*2*1。
另外,还有一个不常见的无限不循环小数:欧拉常数γ=0.5772156649015328......它同时也是一个超越数。
e、圆周率π、欧拉常数γ,这是最有名的无限不循环小数,即无理数。
我手上只有这些,以前在大学时我曾用计算机计算过,比较复杂。
无理数e的前1000位如下:
e=2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354...........................
无限不循环小数有很多啊,例如根号2,根号3,根号5,等等。但最有名的两个无限不循环小数就是圆周率π和自然对数的底数e。自然对数的底数e=2.718281828459045............ e是一个奇妙有趣的无理数,它取自数学家欧拉Euler的英文字头。 欧拉首先发现此数并称之为自然数 。但这里所说的自然数与常见的自然数:1,2,3,4……是不同的。确切地讲,e应称为“自然对数lnN的底数”。e与圆周率π被认为是数学中最重要的两个超越数(不满足任何整系数代数方程的数,称超越数)。而且e、π与虚数i三者之间有一个相当有名的关系式:e^(iπ)=-1。e的近似值可以用以下的计算公式求得:
e=1+1/1!+1/2!+1/3!+...+1/(n-1)!+1/n!,n是正整数。
n!是阶乘的意思,n!=n*(n-1)*(n-2)*......*3*2*1。
另外,还有一个不常见的无限不循环小数:欧拉常数γ=0.5772156649015328......它同时也是一个超越数。
e、圆周率π、欧拉常数γ,这是最有名的无限不循环小数,即无理数。
我手上只有这些,以前在大学时我曾用计算机计算过,比较复杂。
无理数e的前1000位如下:
e=2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354...........................
您不妨试下能否背下来???就像有许多的人在背数万位的圆周率一样。
e=1+1/1!+1/2!+1/3!+...+1/(n-1)!+1/n!,n是正整数。
n!是阶乘的意思,n!=n*(n-1)*(n-2)*......*3*2*1。
另外,还有一个不常见的无限不循环小数:欧拉常数γ=0.5772156649015328......它同时也是一个超越数。
e、圆周率π、欧拉常数γ,这是最有名的无限不循环小数,即无理数。
我手上只有这些,以前在大学时我曾用计算机计算过,比较复杂。
无理数e的前1000位如下:
e=2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354...........................
e=1+1/1!+1/2!+1/3!+...+1/(n-1)!+1/n!,n是正整数。
n!是阶乘的意思,n!=n*(n-1)*(n-2)*......*3*2*1。
另外,还有一个不常见的无限不循环小数:欧拉常数γ=0.5772156649015328......它同时也是一个超越数。
e、圆周率π、欧拉常数γ,这是最有名的无限不循环小数,即无理数。
我手上只有这些,以前在大学时我曾用计算机计算过,比较复杂。
无理数e的前1000位如下:
e=2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354...........................
您不妨试下能否背下来???就像有许多的人在背数万位的圆周率一样。
e=1+1/1!+1/2!+1/3!+...+1/(n-1)!+1/n!,n是正整数。
n!是阶乘的意思,n!=n*(n-1)*(n-2)*......*3*2*1。
另外,还有一个不常见的无限不循环小数:欧拉常数γ=0.5772156649015328......它同时也是一个超越数。
e、圆周率π、欧拉常数γ,这是最有名的无限不循环小数,即无理数。
我手上只有这些,以前在大学时我曾用计算机计算过,比较复杂。
无理数e的前1000位如下:
e=2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354...........................
您不妨试下能否背下来???就像有许多的人在背数万位的圆周率一样。
什么是超越数,已知有哪些超越数?
超越数,数学概念,指不是代数数的数。比如π、e。
超越数的存在是由法国数学家刘维尔(Joseph Liouville,1809 ~ 1882)在1844年最早证明的。
关于超越数的存在,刘维尔写出了下面这样一个无限小数a=0.110001000000000000000001000…(a=1/10^(1!)+1/10^(2!)+1/10^(3!)+…),并且证明取这个a不可能满足任何整系数多项式方程,由此证明了它不是一个代数数,而是一个超越数。
后来人们为了纪念他首次证明了超越数,所以把数a称为刘维尔数。
超越数证明:
刘维尔数证明后,许多数学家都致力于对超越数的研究。1873年,法国数学家埃尔米特(Charles Hermite,1822 ~ 1901)又证明了自然对数底e的超越性,从而使人们对超越数的认识更为清楚。1882年,德国数学家林德曼证明了圆周率也是一个超越数(完全否定了“化圆为方”作图的可能性)。
在研究超越数的过程中,大卫·希尔伯特曾提出猜想:a是不等于0和1的代数数,b是无理代数数,则a^b是超越数(希尔伯特问题中的第七题)。
这个猜想已被证明,于是可以断定e、π是超越数。
除了兀以外的无限不循环小数,还有哪些
1、常用的常数,如π、e……
2、开不尽方的数,如:√2,4的8次方根,
3、构造数;如;
0.101001000100001……,
如果认为本文对您有所帮助请赞助本站