火电厂金属材料读后感(第三季科学公开课观后感作文)

发布时间: 2024-12-15 21:13:08 来源: 励志妙语 栏目: 读后感 点击: 90

金属材料论文2000左右金属材料论文2000左右在很大程度上,化学很受人喜爱,因为神奇多变的化学反应可以创造新的物质,让我们的生活更为方便舒适。...

火电厂金属材料读后感(第三季科学公开课观后感作文)

金属材料论文2000左右

金属材料论文2000左右
在很大程度上,化学很受人喜爱,因为神奇多变的化学反应可以创造新的物质,让我们的生活更为方便舒适。执著于金属研究的卢柯说,作材料研究是如此地令人激动,有那么多的事情等着我们去发现,去研究!
  “超音速”的科研经历
  卢柯以常人所不能及的“超音速”,20岁念完大学,25岁拿下博士学位,28岁成为研究员,30岁成为博士生导师,32岁任国家重点实验室主任,35岁担任中科院金属研究所所长,37岁当选中国科学院院士,取得了一系列国际公认的高水平科研成果,在《科学》和《物理评论快报》等顶级国际学术期刊发表了一系列论文。
  大学时就读于机械制造工程系金属材料及热处理专业的卢柯与金属结下了不解之缘,他最喜欢的课程是《金属学》与《金属材料的热处理》。1985年,卢柯从华东工学院(现为南京理工大学)毕业,来到中科院金属研究所攻读硕士学位。在“纳米浪潮”还没有掀起的时候,他较早地进入了后来很热门的纳米领域。
  攻读博士学位期间,卢柯对非晶态金属的晶化动力学及其微观机制进行了深入研究,在国际上首次提出了非晶态材料的有序原子集团切变沉积化机制,并解释了一系列用经典理论难以解释的实验结果,为以后研究非晶体转变提供了理论依据;修正了被引用10多年的英国科学家斯考特等人确定的Ni-P非晶合金晶化产物间的位向关系;提出非晶态金属的新晶化机制。
  在新晶化微观机制的基础上,卢柯于1990年提出制备纳米晶体的新方法——非晶晶化法,具有工艺简单、晶粒度易于控制、界面清洁且不含微孔洞等优点。论文在美国J.Appl.Phys及Scripta Metall.Mater.发表后,已被引用数百次。美国《应用物理杂志》审稿人对卢柯的这一成果极为赞赏,指出“非晶晶化法无疑对纳米材料研究具有重要价值”。材料科学家师昌绪认为,这一方法“为纳米材料的发展开辟了一条新途径,有广阔的应用前景”。国际学术刊物Mater.Sci.Eng.Reports邀请他撰写此领域的专题综述。该制备方法的确定,使我国在纳米晶体研究领域一跃进入国际前列,已成为目前国际上公认的纳米材料3种主要制备方法之一。
  如何使金属具有超塑性——可承受很大的塑性变形而不断裂,成为各国材料学家面临的一道难题。20年前,葛莱特教授曾预测:如果将构成金属材料的晶粒尺寸减小到纳米量级,材料在室温下应具备很好的塑性变形能力。但多年来,尽管预测得到了计算机模拟结果的肯定,各国材料学家的实验结果却令人失望:孔隙大、密度小、被污染等因素使绝大多数纳米金属在冷轧中易出现裂纹,塑性很差。
  2000年,卢柯课题组在实验室发现了纳米金属铜在室温下的“奇异”性能——即纳米金属铜具有超塑延展性而没有加工硬化效应,延伸率高达5100%。论文在《科学》上发表后,获得世界同行的普遍好评,纳米材料的“鼻祖”葛莱特教授认为,这项工作是“本领域的一次突破,它第一次向人们展示了无空隙纳米材料是如何变形的”。
  专家指出,“奇异”性能的发现,缩短了纳米材料和实际应用的距离,意味着和普通金属力学性能完全不同的纳米金属,在精细加工、电子器件和微型机械的制造上具有重要价值。
  卢柯及其课题组的另一项重要成果是关于晶体过热熔化微观机制方面的,发表在2001年第87卷的《物理评论快报》上。很快,材料科学家、剑桥大学教授RobertW.Cahn就在《自然》杂志上给予了专题评论。
  2003年12月31日,卢柯在《科学》杂志上发表第二篇论文,将铁表层的晶粒细化到纳米尺度,其氮化温度显著降低,这为氮化处理更多种材料和器件提供了可能。表面氮化是工业中广泛应用的一种材料表面处理技术。在表面氮化过程中,材料或钢铁的表面氮化处理往往需要在较高温度下(高于500℃)进行,处理时间长达十几个小时,不仅能耗高,更重要的是,许多材料和工件在如此高温下长时间退火后会丧失其基体的高强度或出现变形,因此,表面氮化技术的应用受到很大限制。大幅度降低氮化温度是长期以来表面氮化技术应用中必须解决的重要技术瓶颈。
  2004年1月12日,“我国金属材料表面纳米化技术和全同金属纳米团簇研究”被评为“2003年中国十大科技进展”之一。
  2004年4月16日出版的第304卷《科学》杂志上,第三次出现了卢柯的名字。他们的研究表明,在纳米孪晶铜中获得超高强度的同时还保持了其良好的导电率;而以往的研究表明,对铜进行强化以后,其导电率是下降的。
  成功的“奥秘”
  在别人眼中,卢柯是战无不胜的“百胜将军”,是上天最眷顾的人。只有他和课题组的同志才清楚自己曾经的失败,曾经的气馁。“你们所看到的成绩只是我1%的工作,其余的99%都是失败,都是残酷的现实。在我过去的研究中,经常会走到几乎坚持不下去的时候。”卢柯说。
  “走不下去的时候,我总是勇敢地承认自己失败了。失败了,再换一个思路接着干。当然,这中间有一个心态调整的过程,但是必须调整到一个好的状态,重新开始。失败其实是科学工作的常态。跳高比赛是以失败而结束的,科学工作则是用一次次的失败来铺路,以成功作为新的起点。当你有了一个灵感,钻进了实验室里,半年,十个月,一年甚至两三年下来才有结果,可结果与你预想的完全不一样,当然沮丧极了。但我们的工作就是这样,你可以沮丧,可以暂时地消沉,但你不可以放弃你的目标。失败了,证明这个思路不对,从某种角度看,它就是你到达终极目标的一个过程。我经常对我的学生说,对自己的思维一定要有极强的信心,Nothing is impossible(没有什么事情是不可能的)!”
  卢柯成功还有一个奥秘——自从上大学后,他就给自己制定了严格的时间表和工作计划,以非常人的工作节奏始终跑在别人的前头。十几年来,他一丝不苟地走在自己的行程中,不受任何外界的干扰。虽然他现在成了媒体追逐的科学明星,但依然故我。
  “上天是公平的,它给每个人的时间是一样的,做了这个,就不能做那个。有的人活得很轻松,一天的活儿用两天的时间干,我则希望用半天的时间就能把一天的活儿干完。如果这样算来,我干一天的活儿等于别人干两天的活儿。我在金属所干了18年,等于干了三四十年的活儿,那么,我37岁当院士,这样算起来也并不年轻。”卢柯说。
  材料学面临最好的机会
  卢柯在努力工作、享受研究乐趣的同时,也感受到了材料学家的责任感,“现在是中国各个领域发展的最好时期,也给材料学的研究创造了最好的机会”。
  卢柯说,中国工业化的进程对材料学科提出了许多严峻的、亟待解决的问题。上个世纪90年代,镍的需求量开始上扬,镍的价格不断上涨,2003年,镍的价格已经达到历史最高水平,供需矛盾尖锐,原因就是中国的工业化。镍是用来做不锈钢的,工业化的显著标志是需要大量的不锈钢。其实,现在所有的原材料都在涨价。如果不发展先进的材料,将面临资源减少,价格上涨,中国的工业化成本将是非常巨大的。

我是大一的,老师喊写篇对金属材料的认识!!!感谢!!

1.我是大一的,学的是材料科学也工程,那天专业导论上,老师喊写篇对金属材料的认识(3000字),大一的我怎么搞得懂这个嘛,所以大家帮哈忙,给我一些这方面的建议,和参考资料。比如写的方向(越多越好),可以参考那些书籍等!2.还有一个我们的那个无机及分析化学实验报告怎么写(包括哪些方面),我滴一篇就遭到不及格,感谢各位咯哈!!可以给篇范文哈!3.我们下期要分方向(金属,无机非,电子,高分子)选哪个方向好一些呢??现在暂时没得考研的打算!请把每个方向的就业形势待遇和学习的内容大致讲一哈!(要你或你朋友在学习中的的认识,不是哪个专业介绍书上的,我以后打算在四川或重庆工作)以上问题可以不答完(但最好每个方面都简单介绍哈,毕竟对我来说都是一种帮助赛),只要能给我一些帮助的都可以写在上面哈!!再次感谢各位!!
金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。 意义:人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。种类:金属材料通常分为黑色金属、有色金属和特种金属材料。①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳 2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。 性能:一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。
[编辑本段]金属材料的疲劳
许多机械零件和工程构件,是承受交变载荷工作的。在交变载荷的作用下,虽然应力水平低于材料的屈服极限,但经过长时间的应力反复循环作用以后,也会发生突然脆性断裂,这种现象叫做金属材料的疲劳。
金属材料疲劳断裂的特点是:
(1)载荷应力是交变的;(2)载荷的作用时间较长;
(3)断裂是瞬时发生的;
(4)无论是塑性材料还是脆性材料,在疲劳断裂区都是脆性的。
所以,疲劳断裂是工程上最常见、最危险的断裂形式。
金属材料的疲劳现象,按条件不同可分为下列几种:
(1)高周疲劳:指在低应力(工作应力低于材料的屈服极限,甚至低于弹性极限)条件下,应力循环周数在100000以上的疲劳。它是最常见的一种疲劳破坏。高周疲劳一般简称为疲劳。
(2)低周疲劳:指在高应力(工作应力接近材料的屈服极限)或高应变条件下,应力循环周数在10000~100000以下的疲劳。由于交变的塑性应变在这种疲劳破坏中起主要作用,因而,也称为塑性疲劳或应变疲劳。
(3)热疲劳:指由于温度变化所产生的热应力的反复作用,所造成的疲劳破坏。
(4)腐蚀疲劳:指机器部件在交变载荷和腐蚀介质(如酸、碱、海水、活性气体等)的共同作用下,所产生的疲劳破坏。
(5)接触疲劳:这是指机器零件的接触表面,在接触应力的反复作用下,出现麻点剥落或表面压碎剥落,从而造成机件失效破坏。
金属材料的塑性
塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。
金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。 字串2
金属材料的硬度
硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
1.布氏硬度(HB)
以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
2.洛氏硬度(HR)
当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的甓壤幢硎荆?HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
3 维氏硬度(HV)
以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。
硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。
实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。
[编辑本段]金属材料性能
金属材料的性能决定着材料的适用范围及应用的合理性。金属材料的性能主要分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。金属很硬.
[编辑本段]机械性能
(一)应力的概念,物体内部单位截面积上承受的力称为应力。由外力作用引起的应力称为工作应力,在无外力作用条件下平衡于物体内部的应力称为内应力(例如组织应力、热应力、加工过程结束后留存下来的残余应力…等等)。
(二)机械性能,金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。金属材料承受的载荷有多种形式,它可以是静态载荷,也可以是动态载荷,包括单独或同时承受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,以及摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标主要有以下几项:
1.强度
这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标主要有:
(1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=(9.8)-1Kgf/mm2或1Kgf/mm2=9.8MPaσb=Pb/Fo式中:Pb?C至材料断裂时的最大应力(或者说是试样能承受的最大载荷);Fo?C拉伸试样原来的横截面积。
(2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。产生屈服时的应力称为屈服强度极限,用σs表示,相应于拉伸试验曲线图中的S点称为屈服点。对于塑性高的材料,在拉伸曲线上会出现明显的屈服点,而对于低塑性材料则没有明显的屈服点,从而难以根据屈服点的外力求出屈服极限。因此,在拉伸试验方法中,通常规定试样上的标距长度产生0.2%塑性变形时的应力作为条件屈服极限,用σ0.2表示。屈服极限指标可用于要求零件在工作中不产生明显塑性变形的设计依据。但是对于一些重要零件还考虑要求屈强比(即σs/σb)要小,以提高其安全可靠性,不过此时材料的利用率也较低了。
(3)弹性极限:材料在外力作用下将产生变形,但是去除外力后仍能恢复原状的能力称为弹性。金属材料能保持弹性变形的最大应力即为弹性极限,相应于拉伸试验曲线图中的e点,以σe表示,单位为兆帕(MPa):σe=Pe/Fo式中Pe为保持弹性时的最大外力(或者说材料最大弹性变形时的载荷)。
2.塑性,
(1)布氏硬度(代号HB),用一定直径D的淬硬钢球在规定负荷P的作用下压入试件表面,保持一段时间后卸去载荷,在试件表面将会留下表面积为F的压痕,以试件的单位表面积上能承受负荷的大小表示该试件的硬度:HB=P/F。在实际应用中,通常直接测量压坑的直径,并根据负荷P和钢球直径D从布氏硬度数值表上查出布氏硬度值(显然,压坑直径越大,硬度越低,表示的布氏硬度值越小)。布氏硬度与材料的抗拉强度之间存在一定关系:σb≈KHB,K为系数,例如对于低碳钢有K≈0.36,对于高碳钢有K≈0.34,对于调质合金钢有K≈0.325,…等等。
(2)洛氏硬度(HR)用有一定顶角(例如120°)的金刚石圆锥体压头或一定直径D的淬硬钢球,在一定负荷P作用下压入试件表面,保持一段时间后卸去载荷,在试件表面将会留下某个深度的压痕。由洛氏硬度机自动测量压坑深度并以硬度值读数显示(显然,压坑越深,硬度越低,表示的洛氏硬度值越小)。根据压头与负荷的不同,洛氏硬度还分为HRA、HRB、HRC三种,其中以HRC为最常用。洛氏硬度HRC与布氏硬度HB之间有如下换算关系:HRC≈0.1HB。除了最常用的洛氏硬度HRC与布氏硬度HB之外,还有维氏硬度(HV)、肖氏硬度(HS)、显微硬度以及里氏硬度(HL)。这里特别要说明一下关于里氏硬度,这是目前最新颖的硬度表征方法,利用里氏硬度计进行测量,其检测原理是:里氏硬度计的冲击装置将冲头从固定位置释放,冲头快速冲击在试件表面上,通过线圈的电磁感应测量冲头距离试件表面1毫米处的冲击速度与反弹速度(感应为冲击电压和反弹电压),里氏硬度值即以冲头反弹速度和冲击速度之比来表示:HL=(Vr/Vi)?1000式中:HL-里氏硬度值;Vr-冲头反弹速度;Vi-冲头冲击速度(注:实际应用装置中是以冲击装置中的闭合线圈感应的冲击电压和反弹电压代表冲击速度和反弹速度)。冲击装置的构造主要有内置弹簧(加载套管,不同型号的冲击装置有不同的冲击能量)、导管、释放按钮、内置线圈与骨架、支撑环以及冲头,冲头主要采用金刚石、碳化钨两种极高硬度的球形(不同型号的冲击装置其冲头直径有不同)。优点:里氏硬度计的主机接收到冲击装置获得的信号进行处理、计算,然后在屏幕上直接显示出里氏硬度值,便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值,同时可折算出材料的抗拉强度σb,还可以将测量结果储存、直接打印输出或传送给计算机作进一步的数据处理。 4.韧性
金属材料在冲击载荷作用下抵抗破坏的能力称为韧性。通常采用冲击试验,即用一定尺寸和形状的金属试样在规定类型的冲击试验机上承受冲击载荷而折断时,断口上单位横截面积上所消耗的冲击功表征材料的韧性:αk=Ak/F单位J/cm2或Kg•m/cm2,1Kg•m/cm2=9.8J/cm2αk称作金属材料的冲击韧性,Ak为冲击功,F为断口的原始截面积。5.疲劳强度极限金属材料在长期的反复应力作用或交变应力作用下(应力一般均小于屈服极限强度σs),未经显著变形就发生断裂的现象称为疲劳破坏或疲劳断裂,这是由于多种原因使得零件表面的局部造成大于σs甚至大于σb的应力(应力集中),使该局部发生塑性变形或微裂纹,随着反复交变应力作用次数的增加,使裂纹逐渐扩展加深(裂纹尖端处应力集中)导致该局部处承受应力的实际截面积减小,直至局部应力大于σb而产生断裂。在实际应用中,一般把试样在重复或交变应力(拉应力、压应力、弯曲或扭转应力等)作用下,在规定的周期数内(一般对钢取106~107次,对有色金属取108次)不发生断裂所能承受的最大应力作为疲劳强度极限,用σ-1表示,单位MPa。除了上述五种最常用的力学性能指标外,对一些要求特别严格的材料,例如航空航天以及核工业、电厂等使用的金属材料,还会要求下述一些力学性能指标:蠕变极限:在一定温度和恒定拉伸载荷下,材料随时间缓慢产生塑性变形的现象称为蠕变。通常采用高温拉伸蠕变试验,即在恒定温度和恒定拉伸载荷下,试样在规定时间内的蠕变伸长率(总伸长或残余伸长)或者在蠕变伸长速度相对恒定的阶段,蠕变速度不超过某规定值时的最大应力,作为蠕变极限,以表示,单位MPa,式中τ为试验持续时间,t为温度,δ为伸长率,σ为应力;或者以表示,V为蠕变速度。高温拉伸持久强度极限:试样在恒定温度和恒定拉伸载荷作用下,达到规定的持续时间而不断裂的最大应力,以表示,单位MPa,式中τ为持续时间,t为温度,σ为应力。金属缺口敏感性系数:以Kτ表示在持续时间相同(高温拉伸持久试验)时,有缺口的试样与无缺口的光滑试样的应力之比:式中τ为试验持续时间,为缺口试样的应力,为光滑试样的应力。或者用:表示,即在相同的应力σ作用下,缺口试样持续时间与光滑试样持续时间之比。抗热性:在高温下材料对机械载荷的抗力。
[编辑本段]化学性能
金属与其他物质引起化学反应的特性称为金属的化学性能。在实际应用中主要考虑金属的抗蚀性、抗氧化性(又称作氧化抗力,这是特别指金属在高温时对氧化作用的抵抗能力或者说稳定性),以及不同金属之间、金属与非金属之间形成的化合物对机械性能的影响等等。在金属的化学性能中,特别是抗蚀性对金属的腐蚀疲劳损伤有着重大的意义。
[编辑本段]物理性能
金属的物理性能主要考虑:
(1)密度(比重):ρ=P/V单位克/立方厘米或吨/立方米,式中P为重量,V为体积。在实际应用中,除了根据密度计算金属零件的重量外,很重要的一点是考虑金属的比强度(强度σb与密度ρ之比)来帮助选材,以及与无损检测相关的声学检测中的声阻抗(密度ρ与声速C的乘积)和射线检测中密度不同的物质对射线能量有不同的吸收能力等等。
(2)熔点:金属由固态转变成液态时的温度,对金属材料的熔炼、热加工有直接影响,并与材料的高温性能有很大关系。(3)热膨胀性随着温度变化,材料的体积也发生变化(膨胀或收缩)的现象称为热膨胀,多用线膨胀系数衡量,亦即温度变化1℃时,材料长度的增减量与其0℃时的长度之比。热膨胀性与材料的比热有关。在实际应用中还要考虑比容(材料受温度等外界影响时,单位重量的材料其容积的增减,即容积与质量之比),特别是对于在高温环境下工作,或者在冷、热交替环境中工作的金属零件,必须考虑其膨胀性能的影响。
(4)磁性能吸引铁磁性物体的性质即为磁性,它反映在导磁率、磁滞损耗、剩余磁感应强度、矫顽磁力等参数上,从而可以把金属材料分成顺磁与逆磁、软磁与硬磁材料。
(5)电学性能主要考虑其电导率,在电磁无损检测中对其电阻率和涡流损耗等都有影响。
[编辑本段]工艺性能
金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下四个方面:
(1)切削加工性能:反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。
(2)可锻性:反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。
(3)可铸性:反映金属材料熔化浇铸成为铸件的难易程度,表现为熔化状态时的流动性、吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等。
(4)可焊性:反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。
快速成型技术的原理、工艺过程及技术特点:
快速成型属于离散/堆积成型。它从成型原理上提出一个全新的思维模式维模型,即将计算机上制作的零件三维模型,进行网格化处理并存储,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,由成型头在控制系统的控制下,选择性地固化或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维坯件.然后进行坯件的后处理,形成零件。
快速成型的工艺过程具体如下:
l )产品三维模型的构建。由于 RP 系统是由三维 CAD 模型直接驱动,因此首先要构建所加工工件的三维CAD 模型。该三维CAD模型可以利用计算机辅助设计软件(如Pro/E , I-DEAS , Solid Works , UG 等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、 CT 断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。
2 )三维模型的近似处理。由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准接口文件。它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用 3 个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。 STL 文件有二进制码和 ASCll 码两种输出形式,二进制码输出形式所占的空间比 ASCII 码输出形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。典型的CAD 软件都带有转换和输出 STL 格式文件的功能。
3 )三维模型的切片处理。根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一系列一定间隔的平面切割近似后的模型,以便提取截面的轮廓信息。间隔一般取0.05mm~0.5mm, 常用 0.1mm 。间隔越小,成型精度越高,但成型时间也越长,效率就越低,反之则精度低,但效率高。
4 )成型加工。根据切片处理的截面轮廓,在计算机控制下,相应的成型头(激光头或喷头)按各截面轮廓信息做扫描运动,在工作台上一层一层地堆积材料,然后将各层相粘结,最终得到原型产品。
5 )成型零件的后处理。从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在高温炉中进行后烧结,进一步提高其强度。
快速成型技术的分类:
快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(Laser Technology),例如:光固化成型(SLA )、分层实体制造(LOM)、选域激光粉末烧结(SLS)、形状沉积成型(SDM)等;基于喷射的成型技术(Jetting Technoloy),例如:熔融沉积成型(FDM)、三维印刷( 3DP )、多相喷射沉积( MJD )。下面对其中比较成熟的工艺作简单的介绍。
1、SLA(Stereolithogrphy Apparatus)工艺 SLA 工艺也称光造型或立体光刻,由Charles Hul 于 1984 年获美国专利。 1988 年美国 3D System公司推出商品化样机SLA-I,这是世界上第一台快速成型机。SLA 各型成型机机占据着 RP 设备市场的较大份额。
SLA 技术是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。当一层扫描完成后.未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
SLA 方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。 SLA 工艺成型的零件精度较高,加工精度一般可达到 0.1 mm ,原材料利用率近 100 %。但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。
2、LOM(Laminated Object Manufacturing,LOM)工艺LOM工艺称叠层实体制造或分层实体制造,由美国Helisys公司的Michael Feygin于 1986 年研制成功。LOM工艺采用薄片材料,如纸、塑料薄膜等。片材表面事先涂覆上一层热熔胶。加工时,热压辊热压片材,使之与下面已成型的工件粘接。用CO2激光器在刚粘接的新层上切割出零件截面轮廓和工件外框,并在截面轮廓与外框之间多余的区域内切割出上下对齐的网格。激光切割完成后,工作台带动已成型的工件下降,与带状片材分离。供料机构转动收料轴和供料轴,带动料带移动,使新层移到加工区域。工作合上升到加工平面,热压辊热压,工件的层数增加一层,高度增加一个料厚。再在新层上切割截面轮廓。如此反复直至零件的所有截面粘接、切割完。最后,去除切碎的多余部分,得到分层制造的实体零件。
LOM 工艺只需在片材上切割出零件截面的轮廓,而不用扫描整个截面。因此成型厚壁零件的速度较快,易于制造大型零件。工艺过程中不存在材料相变,因此不易引起翘曲变形。工件外框与截面轮廓之间的多余材料在加工中起到了支撑作用,所以 LOM 工艺无需加支撑。缺点是材料浪费严重,表面质量差。
3、SLS(Selective Laser Sintering)工艺 SLS工艺称为选域激光烧结,由美国德克萨斯大学奥斯汀分校的C.R.Dechard于 1989 年研制成功。 SLS工艺是利用粉末状材料成型的。将材料粉末铺洒在已成型零件的上表面,并刮平,用高强度的CO2激光器在刚铺的新层上扫描出零件截面,材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成型的部分连接。当一层截面烧结完后,铺上新的一层材料粉末,有选择地烧结下层截面。
烧结完成后去掉多余的粉末,再进行打磨、烘干等处理得到零件。
SLS工艺的特点是材料适应面广,不仅能制造塑料零件,还能制造陶瓷、蜡等材料的零件,特别是可以制造金属零件。这使SLS工艺颇具吸引力。SLS工艺无需加支撑,因为没有烧结的粉末起到了支撑的作用。
4、3DP (Three Dimension Printing)工艺三维印刷工艺是美国麻省理工学院E-manual Sachs等人研制的。已被美国的Soligen公司以DSPC(Direct Shell Production Casting)名义商品化,用以制造铸造用的陶瓷壳体和型芯。
3DP 工艺与SLS工艺类似,采用粉末材料成型,如陶瓷粉末、金属粉末。所不同的是材料粉末不是通过烧结连结起来的,而是通过喷头用粘结剂(如硅胶)将零件的截面“印刷”在材料粉来上面。
用粘结剂粘接的零件强度较低,还须后处理。先烧掉粘结剂,然后在高温下渗人金属,使零件致密化,提高强度。
5 . FDM (Fused Depostion Modeling)工艺 熔融沉积制造( FDM )工艺由美国学者Scott Crump于 1988 年研制成功。 FDM 的材料一般是热塑性材料,如蜡、 ABS 、尼龙等。以丝状供料。材料在喷头内被加热熔化。喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速凝固,并与周围的材料凝结。
FDM技术描述
FDM技术是由Stratasys公司所设计与制造,可应用于一系列的系统中。这些系统为FDM Maxum,FDM Titan,Prodigy Plus以及Dimension。FDM技术利用ABS,polycarbonate(PC),polyphenylsulfone (PPSF)以及其它材料。这些热塑性材料受到挤压成为半熔融状态的细丝,由沉积在层层堆栈基础上的方式,从3D CAD资料直接建构原型。该技术通常应用于塑型,装配,功能性测试以及概念设计。此外,FDM技术可以应用于打样与快速制造。

金属材料生产过程造成哪些污染?

金属材料生产过程中可能会产生多种污染物,以下是多方面分析和优质回答:
1. 废气污染
金属材料生产过程中,炼铁、炼钢、铸造、焊接等工序会产生大量的废气,其中可能包含二氧化硫、氮氧化物、一氧化碳、挥发性有机物等有害气体。这些废气可能会对空气质量造成影响,甚至威胁人类健康。
2. 废水污染
金属材料生产过程中,冶炼、酸洗、电镀等工序会产生大量的废水,其中可能包含重金属、酸碱度高、高温等有害物质。这些废水可能会对水环境造成污染,影响水质和水生生物的生存。
3. 固体废物污染
金属材料生产过程中,可能会产生大量的固体废物,如炉渣、废弃铁屑、废旧设备等。这些固体废物可能会对土壤造成污染,影响植物生长和土壤质量。
4. 噪声污染
金属材料生产过程中,可能会产生噪声污染,如机器运转、设备振动等。这些噪声可能会对周边居民造成影响,影响其生活和工作。
5. 能源消耗
金属材料生产过程中,需要大量的能源,如燃煤、燃油、电力等。能源的消耗不仅会造成二氧化碳等温室气体的排放,还会对能源资源的消耗造成影响。
为了减少金属材料生产过程中的污染,可以采取一系列的环保措施,如:
1. 废气治理:采用除尘、脱硫、脱氮等技术,减少有害气体的排放。
2. 废水处理:采用生物处理、化学处理等技术,去除废水中的有害物质,达到排放标准。
3. 固体废物处理:采用分类、回收、填埋等方式,降低固体废物对环境的影响。
4. 噪声控制:采用隔音、降噪等措施,减少噪声对周边居民的影响。
5. 能源节约:采用节能技术,减少能源的消耗,降低对环境的影响。
此外,政府部门也需要加强对金属材料生产企业的监管和管理,制定相关的环保法规和标准,对不符合标准的企业进行处罚和整改,提高企业的环保意识和责任感。

10篇化学小故事及读后感

化学作业额,各位路过的美女帅哥帮帮忙、、、
百炼成钢
公元前600年中国已掌握冶铁技术,早期的炼铁是将铁矿石和木炭一层夹一层地放在炼炉中,在650-1000℃和上焙烧利用木炭的不完全燃烧产生的一氧化碳使铁矿石中的氧化铁还原成铁,冷却后,取出铁块。这种炼铁方法叫块炼铁,用这种方法炼得铁质地疏松,还夹杂着许多杂质,不坚韧,并无多大实用价值。后来经过不断的实践,人们发现把这种铁,加热到一定温度下经这反复锻打,就可把夹杂的氧化物挤出去,此时铁的机械性能就得到了改善。在反复锻打铁块的基础上,古人又得出块炼铁渗碳成钢的经验,这是最早的钢。西汉时,为提高钢的质量,人们又增加了锻打的次数,由十次,三十次,五十次增至近百次从而得到所谓的"百炼钢"。
宋代沈括在《梦溪笔谈》中记载:"但取粗铁煅之百余火,每煅称之,一煅一轻,至累煅而斤两不减,则纯钢也,虽百炼不耗矣。"这就是"百炼成钢"。
语源:晋•刘琨《重赠卢谌》:"何意百炼钢,化为绕指柔。"
现意:比喻人经过多次刻苦的锻炼,非常坚强,或成为优秀的人物。
此地无银三百两
银,是一种白色柔软的金属元素,熔点961℃,是导电、导热性能最好的金属,有很好的延展性。银在自然界的储藏量稀少,但比黄金多近四十倍。银的化学稳定性好,不易被氧化,但与空气中的硫化合而变黑。
银一般与铝矿共生,在冶炼铝时,银被还原出来。大约在公元前二千多年,人们就已采用这种"吹灰法"提取银,数千年来,银与金一样,应用价值都不大,除了用作货币、装饰品外,几乎没有其他用途。直到现在,白银才在工业上发掘出大量的用途,如,人们发现银是导电性最好的金属,可以用于计算机、导弹等精密电路上;银的反射性能高,可镀在玻璃上制造镜子及在保温瓶内胆防止热量的散失; 银的杀菌性能也很好,是氯化物的十倍,可用于医疗上的收敛及消炎;银的溴化物遇光即分解,具有非常灵敏的感光性,可以用于照相底片及X光片生产,这是银的最大用量的用途。
语源:民间传说:"有人把三百两银子埋在地下,上书'此地无银三百两',邻居王二偷去,回书'隔壁王二不曾偷'。
现意:比喻要想隐瞒、掩饰,结果反而愈加暴露,弄巧反拙。也作"此地无银"。
刀耕火耨
火耨(nòu)者,用火烧去草。古人在播种前放火烧去野草,用余灰肥田。火烧后的草木灰含钾5-12%、钙5-25%、磷0.5-3.5%,是一种高效钾肥,除了供给土壤钾磷等多种元素外,还可降低土壤酸性,对小麦、油菜、红薯、烟草等农作物有明显的增产效果。可别小看"刀耕火耨"这种原始的农业耕作方式,它可是最早的化学肥料的应用。
宋•许观《东斋记事•刀耕火种》记载了这种耕作技术:"每欲布种时,则先代其林木纵火焚之,俟(sì)其成灰,即布种于其间,如是所收必倍,盖史书所言刀耕火种也。"现在,无机化工已经能够生产出各种各样的化学肥料,刀耕火耨的 耕作方式已经基本消失了。
语源:《旧唐书•严震传》:"梁、汉之间,刀耕火耨,民耒(lěi)耜(sì)为食。"
现意:指原始的农业耕作技术。也作"刀耕火种"。
点石成金
黄金在古代时,是作为财富的象征。历代都有一些梦想点石成金的人,如刘安、汉武帝、王莽等等,这些人组织了一大批人才,耗费大量的时间、资金用于炼金术。《史记》记载:"而事化丹砂,诸药齐为黄金。"《抱朴子》记载:"神丹既成,不但长生,又可以作黄金。"哪些在当时可以称得上为一流的化学家,企图利用当时已经得到的各种化合物,如铜、铅、铁、锡等金属,丹砂、雌黄、硝石、矾石等无机化合物,统称"五金八石",在炼丹鼎中,通过采用加热、蒸馏、升华等化学过程,使低贱的金属点化为黄金,当然,最终除了得到一些锌铜合金,色如金而无金性的"伪金",几乎一无所获。
从今天的观点来看,他们哪种经过人工处理,改变物质的性质及结构的思想是具有一定的物质基础的,炼金术所依据的天然物质随着时间的延续,自然朝着自我完善的方向转化的"自然进化论",是一种非常革命的思想,现代的化学工业无不是由各种各样千变万化的化学反应构成的,实际上,现代的化学家已经成功通过人工核反应,用快速中子轰击汞原子得到金,实现了古代炼金家数千年来梦寐以求的愿望。
语源:刘向《列仙传》:"许逊,南昌人。晋初为旌阳令,点石成金,以足逋赋。"
原意:传说中古代方士的一种法术。
现意:比喻把别人不好的文章改为好文章。
沙里淘金
金是一种稀有金属元素,在地壳中的含量只有5%左右,分布稀落,主要来源为山金及砂金,山金夹在岩石和矿石中,含量极少,提取极为困难,砂金本也是山金,历经千百年来的风吹雨打,被冲入江河,与沙一起沉积成矿床,通常每吨沙中约含金3-10克,从古到今,人类都是采用"沙里淘金"的方法开采黄金,即用重力选矿法,利用黄金与沙子的比重差异,用水反复淘洗得到,过程异常艰苦,收获甚微。
金,柔软金黄,熔点1067℃,化学稳定性高,不易被氧化,历来成为财富的象征,古代常常作为流通货币,至今仍被许多国家作为金属硬通货币储备。
唐朝诗人刘禹锡有一首诗,生动地描述了"沙里淘金"的艰辛:
日照澄洲江雾开,淘金女伴满江隈。
美人首饰王侯印,尽是沙中浪底来。
莫道谗言如浪深,莫言迁客似沙沉。
千淘万漉虽辛苦,吹尽黄沙始到金。
语源:宋•王谠《唐语林•赏誉》:"如淘沙取金,剖石采玉,皆得其精粹。"
原意:从沙里淘出黄金。
现意:比喻从大量的材料里剔出糟粕,选择精华,有时也用来形
容做一件事情十分困难,用力很大而收效甚微。
石破天惊
毫无疑问,能产生"石破天惊"的,只有火药的作用。火药是我国古代四大发明之一,火药的基本成份为硝石(硝酸钾)、硫磺及木炭,三者按一定的比例混合加热后,发生激烈的化学反应,产生大量的光和热。
火药的发明来源于古代的炼丹术,硫磺、硝石等都是炼丹家们的主要原料,它们混在丹鼎中的机会是很大的,一旦被加热,发生爆炸事故,于是,于偶然间发明了火药。唐代的郑思远《真元妙道要略》中就记载了此事:"有以硫磺、雄黄合硝石并密烧之,焰起烧手而及烬屋舍者。"当时一些身兼"军事参谋"的术士对此深感兴趣,于是对此作了改进及改良,并首先用于军事用途。唐德宗时,藩镇割据,李希烈据汴梁,刘洽去攻,李的部下方士用火药箭烧了刘的军事设施,这是最早记录火药的用途。从此,冷兵器时代逐步进入火器时代,彻底改变了人类战争的规模及面貌,早期的火药极不稳定,进入十九世纪,逐步被更稳定有效的TNT炸药所替代。
凡事必有两重性,火药一方面用于战争,造成大量的生灵涂炭,另一方面,也用于日常的工农业生产,造福人类,无论架桥铺路,还是开山取石,火药都是必不可少的,随着一阵阵"石破天惊"的巨响,"一桥飞架南北,天堑变通途。"
语源:唐•李贺《昌谷集•李凭箜篌引》:"女娲炼石补天处,石破天惊逗秋雨。"
原意:形容箜篌乐器声音高亢激昂,出人意外,不可名状。
现意:比喻对某一事件感到意外震惊,或对文字议论出奇而惊人。
水乳交融
乳液是一种多相体系,其中至少有一相液滴均匀分散于另一种和它不相混合的液体之中,此种体系皆有一种最低值的稳定度,这个稳定度可因表面活性剂的加入儿大大增强。乳液的类型很多,一般分成两大类,一类为水包油型(O/W)型,水为连续相,油为分散相,如牛奶、天然或合成胶乳;另一类为油包水(W/O)型,油为连续相,水为分散相,如黄油、雪花膏等。"水乳交融"当指前一类,这类乳液可用水无限地稀释。乳液在工农业生产、日用化工等方面有大量的应用,牛奶就是蛋白质、脂肪通过乳酪素为乳化剂分散在水中形成的,是日常生活中常用的营养品。 天然胶乳是热带橡胶树分泌出来的聚异戊二稀树脂的水分散液,是一种重要的高分子材料。化学工业上的乳液聚合也是利用乳液形成的原理,如今已成为一种重要高分子合成方法,生产的胶乳可以直接用作涂料及粘合剂,经过凝聚干燥后,又可得到固体树脂或合成橡胶。
语源:宋•释普济《五灯会元》卷九:"师呵呵大笑:'如水乳合。'"
原意:水和奶汁混合在一起。
现意:比喻关系密切,十分融洽,或结合得十分紧密。也作"乳水交融"。
涂脂抹粉
从古到今,妇女们都喜欢通过涂抹脂粉来装扮自己。实践证明,适当使用脂粉能使人的皮肤光滑、洁白、润泽,既保护皮肤,又美观可爱。涂脂抹粉所用的胭脂,古时是用红蓝花或苏木,加入牛髓、猪胰素等压制成分块,这就是我国最早的日用化工产品。今天通过不断发展起来的各种各样的化妆用品,也仍由颜料、粘合料、香精、色素等基料构成的,大致可分为以下三种类型:
1、油剂型:脂肪含量高,适用于干燥皮肤,如香脂、冷霜等。
2、水剂型:水份含量高,适用于油脂多的皮肤,如杏仁蜜、雪花膏等。
3、药剂型:添加了各种药用成份,有一定的营养及治疗效果,如珍珠 霜、人参霜等。
当然,使用化妆品要适可而止,否则,会堵塞皮肤毛孔,影响皮肤正常的新陈代谢,导致皮炎或过敏,对健康有害无益。
语源:明•凌蒙初《二刻拍案惊奇》:"其妻涂脂抹粉,惯卖风情,挑逗富家郎君。"
原意:女子化妆打扮。
现意:比喻对丑恶的东西进行掩饰,欺骗别人。
青出于蓝
"取蓝"是世界上最早的印染化工,商代《诗经•小雅•采绿篇》记载:"终朝采蓝,......",到了汉代,"取蓝"的规模已经相当发达,《史记•货殖列传》中记载:"千亩卮茜,其人与千户侯等。"
"取蓝"的原材料-蓝草是一种木兰属一年生草木植物,叶子在酶的作用下水解为无色的吲哚酚,染在纺织物上,经日晒氧化成了蓝色的靛蓝化合物。这种取蓝技术在中世纪经中亚传入欧洲,影响广泛。1883年,法国化学家Bayer测定出了靛蓝的分子结构,是一种双羰基、双苯环含氮化合物。1897年西德BASF公司首先采用工业合成方法生产靛蓝。用靛蓝印染纺织品,颜色鲜艳,经久耐磨,至今仍旧大量使用,当代最流行的牛仔裤就是这样染成的,当然,所用的靛蓝已非"青出于蓝"了,而是通过有机合成而得到的。
语源:《荀子•劝学篇》:"青,取之于蓝,而青于蓝。"
原意:靛青从蓝草中提炼出来,而颜色比蓝草更深。
现意:比喻学生超过老师或后人超过前人。
如胶似漆
早在三千多年前的中国,人们就用动物皮、角、骨来熬制骨胶、牛皮胶等,用来粘合各种物件,这就是最早的化学粘合剂。相传举世闻名的万里长城也是用石灰、糯米糊等混合调配的粘合剂把无数的石块粘接起来而建成的,这种无机-有机混合胶,强度高,防腐,经久不坏。随着高分子材料技术的日新月异,如今的粘合剂几乎可以粘合任何物质,从日常用品到航天飞机,粘合剂都是必不可免的。
生漆是我国的特产,古称"中国漆",是由天然漆树分泌出来的粘性液体,是最早的化学涂料,《禹贡•夏书》记载:济河的作用"唯兖州......贡漆丝",可见,生漆与丝绸齐名,同为我国古代的贡品。如今,漆的品 种繁多,在建筑、家俱、五金等等都要用到,起到防护及美观的作用。
粘合剂和油漆,使用时都非常注重它们对物件的附着能力,因此,用成语"如胶似漆"比喻人与人之间的亲密关系是最恰当不过了。
语源:《史记•鲁仲连邹阳列传》:"感于心,合于行,亲于胶漆,昆弟不能离,岂惑于众口哉?"
原意:如同胶漆粘着一样。
现意:形容相互之间情投意合、亲密无间。多指夫妻感情深厚。也作"如胶如漆"。
本文标题: 火电厂金属材料读后感(第三季科学公开课观后感作文)
本文地址: http://www.lzmy123.com/duhougan/398866.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    罗克查娜读后感(有关英国作者笛福的资料和鲁滨孙的资料\])罗克查娜读后感(有关英国作者笛福的资料和鲁滨孙的资料\])
    Top