读希腊数学读后感(从古希腊数学历史中学到了什么)

发布时间: 2024-02-09 06:45:58 来源: 励志妙语 栏目: 读后感 点击: 92

数学史读后感,认真读完一本著作后,相信大家的收获肯定不少,此时需要认真地做好记录,写写读后感了。那么读后感到底应该怎么写呢?下面是我精心整理...

读希腊数学读后感(从古希腊数学历史中学到了什么)

数学史读后感

  认真读完一本著作后,相信大家的收获肯定不少,此时需要认真地做好记录,写写读后感了。那么读后感到底应该怎么写呢?下面是我精心整理的数学史读后感范文,仅供参考,大家一起来看看吧。

  数学史读后感 篇1

  从小到大,在学习数学的过程中,接触大量的数学题,对数学的历史很少提及。《数学史》,一本专门研究数学的历史,娓娓道来,满足了我的好奇,把数学的发展过程展示出来。

  本书于1958年出版,作者J.F.斯科特。书中主要阐述西方数学的发展历史,但也专门用一章讲述印度和中国的数学发展。沿着时间轴,数学的发展经历了从初等到高等的过程。

  上古时代的古埃及人和古巴比伦人在平时的生产劳作中运用到了数学知识。

  古希腊人继承这些数学知识并不断拓展,成为数学史上一个“黄金时代”,涌现出毕达哥拉斯、柏拉图、亚里士多德、欧几里得、阿基米德,丢番图等一系列耳熟能详的名字。

  在黑暗的中世纪,数学发展处于停滞状态,而斐波那契的出现把数学带上复兴。

  文艺复兴,数学又进入一个蓬勃发展的时期,对解三次方程和四次方程、三角学、数学符号、记数方法的研究没有停步。“+”、“-”、“=”、“”、“>”的符号是在那个时候出现的,同时出了一名数学家韦达——韦达定理的发明者。

  7世纪,解析几何出现、力学兴起、小数和对数发明。这些都为微积分的发明奠定了基础。牛顿和莱布尼兹两位大师的研究,在数学领域开辟了一个新纪元。

  8世纪,为完善微积分中的概念,各路数学家在数学分析方法上有所发展。欧拉、拉格朗日,柯西等大师采用极限、级数等方法让微积分更加严谨。同时,非欧几何的理论开始萌芽。

  纵观全书,数学的发展是由一群人搭建起来的。前人的工作为后人的研究奠定了基础。后人在前人的工作上不断突破和创新。另外,数学中也有哲理,天地有大美而不言。当看到欧拉时,想到欧拉公式;看到韦达,想到韦达定理。公式很简洁,但把规律说清楚了。数学爱好者可以试着解里面的数学题,看看古人在当时是如何研究的,有的方法很笨拙,有的方法很巧妙。读完后,发现学习数学,会解几道数学题是不够的,还要学会去培养自己的思维。毕竟数学家的思维也会受到历史的局限。比如负数开根号,当时被人看来是无法接受,后来发明了虚数。

  历史是在不断地前进,数学的发展亦然。想知道数学和历史的跨界,那就来看《数学史》。

  数学史读后感 篇2

  今年的寒假出奇的漫长,在这漫长的寒假里,我读了一本我不怎么喜欢的书——《数学史》,为什么不喜欢呢?是因为我很多不懂,但是读着读着我就喜欢上了,《数学史》记录着人类数学历史发展的进程,读了它,我有一点肤浅的体会。

  体会一:数学源自于与生活的需要与发展。

  书中写到:人类在很久之前就已经具有识辨多寡的能力,从这种原始的数学到抽象的“数”概念的形成,是一个缓慢渐进的过程。人们为了方便于生活便有了算术,于是开始用手指头去“计算”,手指头计数不够就开始用石头,结绳,刻痕去计计数。例如:古埃及的象形数字;巴比伦的楔形数字;中国的甲骨文数字;希腊的阿提卡数字;中国筹算术码等等。虽然每种数字的诞生都有不同的背景与用途,以及运算法则,但都同样在人类历史发展和数学发展起着至关重要的作用,极大地推动了人类文明的前进。

  体会二:河谷文明和早期数学在历史的长河一样璀璨夺目。

  历史学家往往把兴起于埃及,美索不达米亚,中国和印度等地域的古文明称为“河谷文明”,早期的数学,就是在尼罗河,底格里斯河与幼发拉底河,黄河与长江,印度河与恒河等河谷地带首先发展起来的。埃及人留下来的两部草纸书——莱茵徳纸草书和莫斯科纸草书,还有经历几千年不倒的神秘金字塔,给后人诠释了古埃及人在代数几何的伟大成就,也给后人留下了辉煌的文化历史,而美索不达米亚在代数计算方面更是达到令人不可思议的程度。三次方程,毕达哥拉斯都是它创造的不朽的历史,在数学史上的地位是至关重要的。

  古人云:读史使人明智。读了《数学史》让我明白:数学源于生活,高于生活,最终服务于生活,运用于生活。

  数学史读后感 篇3

  最近一段时间,我花两天时间认真阅读了《这才是好读的数学史》这本书。这使得我对数学的发展有了更多的了解。

  通过这本书的内容,我了解到了数学是如何发展起来的,和一些为数学发展做出过巨大贡献的集体或个人。从这本书里,我知道了,数学是从古代中东地区发展起来的,在经过一段时间的发展后,之后便在古希腊,印度,之后再是伊斯兰帝国成长和发扬光大,后来再在欧洲得到进一步的发展。这本书还告诉了我,数学不是男性的天下,因为书里还提及了一些十分杰出的女性数学家,她们也为数学的发展做出了巨大的贡献。

  数学史是一个庞大的内容,可以说,自从文明开始,就有了人去研究和在生活之中使用数学,数学为人们的生活带去了巨大的便利。这本书在做表述数学史这一庞大的内容时,还将其尽量简化,简化成了几个板块并且还是用十分生动的有趣的语言,但这样也有缺点,就是有很多其他的事情没有介绍到,同时对于中国的数学,作者可能是没能找到太多相关的资料,所以并没有介绍太多。

  《这才是好读的数学史》这本书先是说了数学在各个古代文明中的发展,之后又讲了其中世界上有名的数学科目,并分别介绍了在这些方面出名的数学家,在后面又讲到了现代数学,通过这儿我知道了,我们现在所学的数学是非常古老的,几千年前的东西了,我们甚至连中世纪的水平都没达到,也由此可以看出数学的发展之快。数学在一次次的个性与进步当中,变得越来越深奥,难以理解。

  从千年前的1+1=2再到函数,再到微积分,再到现代数学,数学也开始运用在更多地方,像航天,工程等,所以说,只有学好数学才能为社会做出更大的贡献。

  数学史读后感 篇4

  又这样过了一个月了,尽管也就那么的几节数学史的课,可是,依然让我听得津津入味。认识数学历史,重温数学的发展道路。

  数学,似乎是一个枯燥的学科,但是,却是我们生活当中,最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平秤,是我们量化自己的必要工具。数学,就是这么的一个“工具箱”,前人用万分的努力汗水,把这个工具弄得更为人性化,更能让我们好好地使用。《数学史概论》这本书,真的让我对数学有了更深的认识。

  下面,我说说从《数学史概论》这本书,我又学到了什么。

  古希腊第一位伟大的数学家泰勒斯,曾利用太阳影子成功地计算出了金字塔的高度,实际上利用的就是相似三角形的性质。看吧,利用数学简单的思维,就能把本不可能完成的计算,就这样轻松解决了。在泰勒斯之后,以毕达哥拉斯为首的一批学者,对数学做出了极为重要的贡献。发现“勾股定理”,是他们最出色的成就之一,因此直到现在,西方人仍然把勾股定理称为“毕达哥拉斯定理”。正是这个定理,导致了无理数的发现。勾股定理,我相信很多人都很熟悉,可是又有多少人知道其中的具体的得来过程呢,从这条定理的证明,到后来导致了无理数的发现,我也相信未来,也一定有不少的理论在这个基础上,不断地被发现,被证明。在毕达哥拉斯之后,就是伟大的古希腊哲学家亚里士多德,他是人类科学发展史上最博学的人物之一,正是他所创立的逻辑学,对古希腊数学的发展产生了深远的影响。到了欧几里德时代,几何学已经成为一门相当完整的学科了。欧几里德的名著《几何原本》,是世界数学史上最伟大的著作之一。时至今日,我们在初中阶段学习的平面几何,大部分知识依然来源于古老的《几何原本》。在此之前,我只知道,亚里士多德在哲学方面为世界做出了很大的贡献,可是也不可否认,在几何方面他也对数学界做出的贡献不可磨灭。

  研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时通过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的.规律与文化本质。作为数学史研究的基该方法与手段,常有历史考证、数理分析、比较研究等方法。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。正是我们不断地为数学这座高楼添砖加瓦,它才能越立越高,越来越扎实,我也为可以这样学习和认识数学而感到满足!

  数学史读后感 篇5

  《数学史》这本书从希腊数学讲到了现代数学。我所感兴趣的部分有几个,一是关于以前的技术系统。我不知搭配人们是从何时开始计数的,但是当时的以十的幂为基数的计数系统以及六十进制的分数表示虽然不及现在的阿拉伯数字方便,但仍值得我们称赞。第二是希腊数学。虽然希腊人并不太在意应用数学,但是我觉得他们所研究的几何也是需要来源于生活的,是要从生活中去寻找,发现和提取的。也就是那个时候,欧几里得编出了影响深远的《几何原本》。我们现在所学的几何就与《几何原本》有着很大的关系,所以说这么看来的话,到现在我们也不过只是学到了数学的皮毛而已,许多的知识还是希腊数学。且其中的平行公设到了十九世纪仍然被研究。所以用影响深远来描述《几何原本》,应该不为过吧。同时,他们也对Π有了一些认识。由此可见,他们不仅从生活中提炼出了数学思想,而且还在上面添加了许多华丽的色彩,使得整个数学系统更加庞大,也让数学渐渐成为我们不敢仰望的存在。最后一个令我感兴趣的部分是代数。步入初中学习后,我们开始接触代数,但读了《数学史》我才知道代数竟然是十六、十七世纪所产生的,过了几个世纪,代数又成为了让人头疼的部分。并且在那个时候,他们就已经开始研究一些复杂的代数问题了。

  《数学史》向我们完整地展示了数学各个枝节细致的发展过程,这种过程被描写的也还算有趣(至少让我看得下去),虽然专业术语很多,阅读有障碍,但我不得不说,这确实是好读的数学史。

  数学史读后感 篇6

  《数学史》把数学几千年的发展浓缩为这本编年史中。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但并没有忽视中国文明、印度文明和阿拉伯文明的贡献,是一部经典的关于数学及创造这门学科的数学家们的单卷本历史著作。读了这本书,让我对数学学习有了新的认识和感悟,也让我更深层次的了解到数学的魅力和伟大,以及对前人的崇敬。

  数学源于人类的生活与发展。书中说,“人类在蒙昧时代就已具有识别事物多寡的能力,从这种原始的‘数觉’到抽象的‘数’概念的形成,是一个缓慢的,渐进的过程。”人类为了便于生活生产的需要,开始以手指头计数,手指数不够了,开始用石头计数,结绳计数,刻痕计数。又经过几万年的发展,随着几种文明的诞生与发展,记数系统在各种文明中都有了表示方式。古埃及的象形数字,巴比伦楔形数字,中国甲骨文数字,中国筹算数码等等。

  但是,为什么时至今日我们最习惯和擅长使用的是十进制计数的方式呢,难道就是因为老师们一代一代这样教出来的吗?很多人可能就是这样认为的,或者根本并未思考过。书里写到:“十进制在今天的普遍使用,只不过是解剖学上一次偶然事件的结果而已:我们中的大多数人,生来就有10个手指、10个脚趾。”经历过扳着手指头数数的过程,可能十进制早已在我们的心中留下了牢固的烙印。这就是一个知识的自然形成。

  通过对书中一些知识的阅读与思考,可以感觉到许多知识并不是那些先驱者凭空乱想出来的,是根据某种需要而研究出来的规律,而且是一些自然存在的规律,我们今天所学的知识正是这些已经总结出来的规律。“坐标系”这个词,对很多人来说可能并不陌生,即使他的数学知识已经“还给老师”很多年了,他也许还知道什么是“经度纬度”。为什么会出现这样的现象呢,也许是因为后者在生活中出现的更多一些,但其实两者的实质都是一样的。一个小故事说:“笛卡尔小时候在一次晨思时看见天花板上有一只苍蝇在爬,他的头脑中闪现出智慧的火花,如果知道苍蝇和相临两个墙壁的距离之间的关系,就能描述它在天花板上的位置与运动路线。”这个故事可能是编造的,但最终形成了我们今天所知的“笛卡尔坐标系”。这样的思想广泛的应用在天文,地理,物理等许多的学科中。

  我们在学习知识的时候是否思考过这个知识是由何而来的呢?是否注意到了在知识体系这张大网中,每个知识在什么位置上呢?难道我们真的可以单纯的认为每个知识都是孤立的考试对象吗?

  数学源于生活,高于生活,最终也将服务生活,运用于生活。在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这也许是由于我们的数学所教的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样也许可以激发学生的学习兴趣,也有助于学生对数学认识的深化,让更多的学生懂得数学。

  数学史读后感 篇7

  《数学史》一直是我最想读的一本书教学中我越来越觉得作为一个数学教师,数学史对我们有多少重要!于是我拜读了数学史。

  我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

  我知道了,第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是,希帕苏斯却被无情地抛进了大海。不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯!

  第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。

  第三次数学危机——我们听过这个名字——罗素,但是紧跟在他的身后的两个字却是那么刺眼——“悖论”。“罗素悖论”的出现使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础。与此同时,歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。数学似乎是再也站不起来了。是的,罗素的观点似乎真的很有道理,危机产生后,数学家纷纷提出自己的解决方案,比如ZF公理系统。这一问题的解决到现在还在进行中。罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!不过,我们不能蔑视“罗素悖论”,换种说法,不正是这个“悖论”引起了我们的思考吗?不正是这个“悖论”使我们更有创造精神吗?

  我知道了,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。

  数学史读后感 篇8

  在这个寒假,我阅读了一本名叫《这才是好读的数学史》这本书叫这个名字确实是名副其实,他为人们介绍了最全面的数学史,以及名人与数学之前的故事,还有各国数学的起源到发展。

  数学的形状和名称以及关于计数和算数运算的基本概念似乎是人类的遗产。早在公元前500年,数学就出现了,随着社会的不断发展,就需要一些方法来统计拖款欠税的数额等等,这时候数学就开始出现了。那时候的古埃及人用墨水在纸草上书写这种,这种材料是不易保存数千年的。大多数埃考古家挖掘的石头都是在神庙和陵墓附近,而不是在古城遗址。因此我们只能通过少量的资料来考察古埃及的数学发展史。

  许多古代文化发展了各式各样的数学,但是希腊数学家们是独一无二的,他们将逻辑推理和证明摆在数学的中心位置。希腊数学传统的保持和发展一直延续到公元400年。我们了解的希腊数学最早是欧几里得的《几何原本》,可我们也只了解这一本著名的书。希腊数学的优势便是几何,尽管希腊人也研究了整数,天文学,力学。但是根据古希腊几何学史学家的说法,最早的希腊数学家是600年前的泰勒斯,毕达哥拉斯都要比他晚一个世纪,当记录历史时,泰勒斯和毕达哥拉斯都成为了远古时期的神话级人物。

  又在20世纪初,希伯尔特提出了一系列重要问题,又在21世纪开始在克莱数学学院的带领下,选择7个数学课题,并且提供的100万美金来解决每一个问题数论则是另一个发展方向。正如我们的数学概念小史中解释的,费马的最后定理在1994年得到了证明。

  在今天的数学中涉及了许多不同的领域,所以我们要好好学习数学,并且多看有关数学的书,才能使我们的数学成绩突飞猛进。

  数学史读后感 篇9

  在任何起点上要想学好数学,我们需要先理解相关问题,然后才能赋予答案的意义

  ——引言

  数学,似乎是一个枯燥的学科,但却是我们生活里最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平称,是我们量化自己的必要工具...是的,数学是一个“工具箱”!那么,前人是怎么样把这个工具弄得更为人性化,更能让我们好好地使用呢?看完《这才是好读的数学史》后,我知道了许多。

  《这才是好读的数学史》介绍了数学从有记载的源头,到最初的算数,再到代数、几何等领域不断地深入化发展的历史过程。本书按照历史发展顺序,先后介绍了数学的开端,古希腊的数学,古印度的数学,古阿拉伯的数学,中世纪欧洲的数学,十五和十六世纪的代数学。

  在人类对于数学漫漫求索之路上,诞生了许多古代文化,而这些古代文化发展了各种各样的数学。其中,古代伊拉克的历史跨越了数千年,它包括了许多文明,如苏美尔,巴比伦,亚述,波斯和希腊文明。所偶有这些文明都了解并使用数学,但有很多变化。在这儿不得不提到的是古希腊数学。在此之前,各个文明运用数学仅仅是用来协助、解决一些简单的生活问题,有时不就此满足的人们也会有简单的探索,但希腊的数学家们是独一无二的,他们将逻辑推理和证明作为数学中心,也是正因如此,他们永远改变了运用数学的意义。

  数学源于生活却高于生活。如今的数学在生活中被广泛的运用,一起热爱数学吧!向为数学做出巨大奉献的前人们致敬!

  数学史读后感 篇10

  在这个寒假里,我接触到了《数学史》这本书。这本书介绍了数学从有记载的源头向最初的算术、几何、统计学、运筹学等领域不断深化发展的历史进程,以及如今数学的发展。

  这本书分为两篇,上篇是数学简史,下篇是数学概念小史。这本书中令我印象最深的数学家就是费马。皮埃尔·德·费马是属于文艺复兴时期传统的人,他处于重新发掘古希腊知识的中心,但是他却问了一个希腊人没有想到过要问的问题—费马大定理。这个问题困惑了世人358年,直到1994年的9月19日安德鲁·怀尔斯才宣布解开这个问题。这个问题起源于古希腊时代,它联系着毕达哥拉斯所建立的数学的基础和现代数学中各种最复杂的思想。费马大定理的故事和数学的历史有着密不可分的联系,它对于“是什么推动着数学发展”,或者是“是什么激励着数学家们”提供了一个独特的见解。费马大定理是一个充满勇气、欺诈、狡猾和悲惨的英雄传奇的核心,牵涉到数学王国中所有最伟大的英雄。巴里·梅休尔评论说,在某种意义上每个人都在研究费马问题,但只是零星地而没有把它作为目标,因为这个证明需要把现代数学的整个力量聚集起来才能完全解答。安德鲁所做的就是再一次把似乎是相隔很远的一些数学领域结合在一起。因而,他的工作似乎证明了自费马问题提出以来数学所经历的多元化过程是合理的。

  读了数学史后,我认为数学在我们的生活中扮演着不可或缺的角色,只有学好数学,学会应用数学,我们才能在这个正在向数字化发展的社会稳稳地站住脚跟。

数学书籍读后感

当细细品完一本名著后,大家一定对生活有了新的感悟和看法,需要好好地就所收获的东西写一篇读后感了。那么我们如何去写读后感呢?下面是我帮大家整理的数学书籍读后感范文(精选13篇),希望对大家有所帮助。

数学书籍读后感 篇1

世纪老人冰心说过:“读书好,好读书,读好书。”“读一本好书,可以使你心灵充实;读一本好书可以使你明辨是非;读一本好书可以使你有爱心、知礼仪。”让我们喜欢读书,热爱读书,从读书中获得快乐与幸福。这是我们第二实验小学师生们不断的追求。我最近读了《数学故事》这本书。本书紧密联系现实生活,是以课本为依据,贯彻新课程的标准理念,从数字、运用、计算、代数、几何、统计、与概率、逻辑推理等方面讲述了一个个精彩的小故事。这里不仅能给予学生智慧,还能给予学生力量,在教育之路上收获的快乐与幸福。这里的数学不在是枯燥的数字,而是一个个活泼有趣的故事,每个故事后面的小板块也为它增色不少。

就说神秘的数字1吧,先讲小故事,数字王国召开大会,主要是讲讲各个数字成员的用途。再说,是有着特殊含义的数字。我们大家都知道,排序的时候,就意味着第一位。而所谓第一位,就是大王或者头目,甚至班长、队长什么的。可是在衡量物品的数量或大小的时候,也被用作代表“很小”、“少”的意思。这时的1,和刚才所说的代表顺序的意思就完全相反了。即使在一个很小的地方,也能发出耀眼的光芒。大家听过“一字值千金”这句话吧?这里把“一”和“千”放在一起比较,更突出了“一”的力量。还有像“千里之行始于足下”、“以一推十”这类的名句也足以证明的神奇之处。

之所以数学里面的一些抽象的东西变成了活了的东西,数是数学学习的基础,数字是蕴藏智慧的精灵,每一个数字背后都有着有趣的故事。0是由谁创造的呢?无穷无尽的数字都有怎样的分类呢?数字之间会发生一些怎样有趣的故事呢?数字王国的秩序如何维持?这些有趣的数学问题在这本书中都有讲述。每一个平凡的数字背后都有一段不平凡的故事,这些故事会给我们打开一个完整不同的数学世界。在这里,数学不再枯燥,数字成了一个个充满智慧的精灵。有趣的数学问题,灵活的解题思路。它不要求你一定解出答案,而是希望你从这些故事中提炼出一种数学思维。奇数、偶数隐藏的秘密这个故事的后面考考你,韩信率部队屡克敌兵,于是赏三军,并且举行了一场拔河比赛。左边的参赛人员是3个小兵和2个大兵,右边参赛人员是4个大兵和1个小兵。比赛之前人们都知道4个大兵的力气和5个小兵的力气相当,但左边那2个大兵是孪生兄弟,力气特别大,他们的力气是2个小兵加1个大兵的力气之和。还没比赛,韩信就说出了胜败,赛后结果正是韩信所说的。那么韩信到底是说哪边胜利呢?象这样有趣的数学问题充分体现了在故事中提炼出一种数学思维。还有休闲吧、思维拓展训练营、问题直通车等帮助理解数学知识。相信这本书将激励孩子告别普通与平庸,在轻松的故事中变得更加优秀。

数学书籍读后感 篇2

在这个暑假里,我看了一本叫《马小跳玩数学》,从中我学到了不少数学知识,还学到了生活中的很多数学题。

比如说:书中的人物唐飞想像福尔摩斯那样擅于断案。他就决定去外面寻找机会,于是就约了毛超和张达一起去。他们在公园里溜达时看到有一辆车子不小心撞到了一位老爷爷,而后急忙掉了个头,开走了。唐飞他们就赶过去把老爷爷扶起。唐飞想:这就是一个好机会,可是车子跑太快了,不知道车的车牌号。张达说:我记得车牌号,是四位数,百位比千位多3。毛超接着说:十位是百位的2倍多1,个位比十位少2。唐飞冥思苦想,终于想出来了,车牌号是:1497。最后,这辆车终于被警方抓获。

从这件事我知道了,生活中有一些小事,要我们去观察,去思考。

数学书籍读后感 篇3

今天,爸爸给我买了一本书,我一看是《马小跳玩数学》,这是什么书呀?于是我津津有味地读了起来,我发现原来这本书还真有趣,其中有个故事令我非常难忘,就是《扑克游戏》。

故事是这样的,有位魔术师请了一位观众抽了一张扑克牌,让观众不要给他看,而是给其他的观众看,然后魔术师就给了这位观众一个公式,让他把所抽的扑克牌上的数字先乘以2,再加3,和再乘以5,最后再把积减去25,然后让他把算出的结果告诉他,那位观众算好后就把结果50告诉了魔术师,只见魔术师从牌里抽出了一张数字6的扑克牌给观众们看,观众们都感到不可思议,后来又用同样的方法试了几遍,都是正确的,观众们发出了啧啧地称赞声,其实这位魔术师是运用了数学公式,他把结果先加上10,然后再把和除以10,这样结果就出来了。

还有很多这样精彩的数学游戏,让我们在玩的时候就掌握了学习方法,真的很棒!

放暑假了,妈妈给我买了一本书,我很快就被书的名字吸引住了,《马小跳玩数学》,在平时,大家都是学数学,而马小跳把它变成了“玩数学”,我感到很有意思,数学怎么就可以玩呢?想到这,我边翻开了书看了起来,果然和以前的大不一样,很有意思的。

作者已将故事的方式,将数学通俗易懂的讲述给大家,树立有很多有趣的故事,我喜欢《蜗牛爬鱼缸》和《野战有游戏事件》等。

每个故事都有一道数学题,马小跳都能一一解答。马小跳是一个聪明快乐的学生,他有正能量,在生活中遇到各种问题他都能保持积极向上的心态。他爱玩、爱闹、爱哭、爱笑也闯祸不止。成绩一般却有情有意,真诚待人,是一个诚实善良的好学生,我羡慕他,更佩服他。

读了《马小跳玩数学》这本书后,我也明白了学习数学的窍门了,无论难题有多大,只要我们肯用心、下苦功就一定能够找到方法解答的。数学可以玩,语文也可以玩,让我们一同来把课文难题当作游戏来玩玩吧!

数学书籍读后感 篇4

暑假里,我读了《数学在哪里》这本书,它主要是唐彩斌和彭翕成编写的,这两位文学作家很有名气,我还读过他们好多的书籍。

《数学在哪里》里面讲解了许多有趣的数学知识,运用故事讲解,让我很容易理解,树立的内容各种各样,有乘除法估算,有简便运算和认识毫米和千米,还有认识周长、面积等等。那里面还有好多趣味的题目,难的题目有时候让我苦思冥想,一个多小时才能解出答案,简单的也很快,我可以5分钟之内就做出来。真是一本有挑战的书啊。

这本书我读过之后,感觉真是一本有趣的书,希望所有的小朋友都可以看一看里面的数学知识,挑战一下有难度的题目,锻炼自己的思维,让自己不断成长。

数学书籍读后感 篇5

我已经是第二次看马小跳玩数学了。杨红樱老师写的马小跳玩数学书很受我们小学生的喜爱。书中含有80个趣味数学故事,如“厉害的侦探”,最让我着迷的是“奇妙的舞蹈队形”里头讲了芭蕾舞队要排练一个节目。一共分两队,它们分别是12人和11人,各要求排成6行,每行4人。夏林果不知该怎么排,结果是马小跳和路曼曼帮她解决,也让我明白了怎样排。

我很喜欢这本书,因为它让我懂了很多以前不懂的解题诀窍。如100米围墙每隔5米栽1棵树,我们经常不想就把它得20棵,但两端却把它给忘了,所以栽的棵数要比段多1棵,就是21棵。

这本书让我们玩中学,学中玩,不再无聊。这本书还让我们懂得了生活中处处都是数学。

数学书籍读后感 篇6

《我就是数学》是华应龙老师的一本教育随笔,全书共有六个部分,即“课前慎思”、“课中求索”、“课后反思”、“听课随想”、“评课心语”和“生活感悟”,其中记录了华老师的教学中的点滴,也有他听课的感受,让人读后能有思,有悟。字里行间都透露出他对教学实践的反思,也有他对人生的感悟。所以读起来让人倍感亲切,生动,感人,又蕴涵智慧,读后回味无穷。

华老师虽然是一名数学教师,但却有着丰富的文化底蕴,文章中经常引古论今,从我国古代的名家到国外的学者;从诗歌到故事他都能结合课堂中发生的事,在全方位的反思中恰当地引用,而且他还善于以日常生活中的事,如农民种地、打篮球等事情联系到教师的教学,联系到数学。这些,都得益于他的喜读善思。一个工作繁忙的教育者,在有限的时间里阅读了如此多的书籍,真的令我佩服得五体投地了。现实中,我们自己总是抱怨没时间读书,时间都用在思考如何教学上了。却不知道,我们平时的思考基本上是在做无米之炊。没有理论作指导,纵然想破脑袋,得出的也必然是肤浅的东西。

华老师的心思却极为细腻,所作随笔大都从细处入手。从老师的教具掉地上,孩子捡起来交给老师,老师没有道谢。到蹲下来和孩子对话,到老师自己擦黑板,到究竟怎么读分数……等等。这些细节问题在我们的课堂上都会经常出现有的我有所注意,有的我根本就没放在心上。读了华老师的这些随笔,对我太有启发了。是的,教育就是要从小细节方面入手,小的不注意,大的即使注意了,对一个教育者的进步来说,也不会有特别大的作用。

华老师在课堂上的成功,我觉得最大的原因是来自于他在课前的慎思。如在“角的度量”一课,他思考能否创设一种情境,让学生感受到量角的用处,经过多天的搜寻、比较、思考,他设计了大头儿子和小头爸爸配玻璃的情境,但与同组老师讨论后又否定了这一情境,最终经过反复思考后创设了三个滑梯的设计,这个设计既让学生感受到量角的必要性,又缩短了数学教材与学生生活经验之间的距离。同时,华老师也十分注重课后的反思,更重要的是反思后的再实践。学生的一个错、一句话,教师在课堂上一个不经意的行为都会让他思考良久。正是他这种课前、课中和课后不断思索的精神,才成就了现在这个在课堂中游刃有余,让无数教师佩服,让无数学生喜欢的华老师。

《我就是数学》是一本好书,它以生动地形式教给了我一种教学理念,教会了我一种教学方法,让我在今后的工作中受益无穷。

数学书籍读后感 篇7

你知道三角形的作用吗?你知道混合运算是怎样算的吗?那就跟我一起“玩转数学”吧!

它是一本根据故事来传授知识的书,让我们对枯燥的的数学有了新的认识。它把数学问题融入到故事中,不是简单、直观的数学算式,而是在故事中思考数学问题。例如猴妈妈买桃分桃的故事。它是一个童话故事,讲述了小猴可爱的一面,同时也提出了数学难题。让我在不知不觉中用数学知识帮小猴解决了问题。还有很多呢,比如怎样列除法算式、用谐音记数字和十进制的由来。希望你也来读这本好书。

数学书籍读后感 篇8

崭新的一天开始了,我在做作业时,突然眼前闪过一本书的背影,我好奇地停下手里的作业,转身拿起看了起来。

这本书可有趣啦。我仿佛置身其中,聪明,机智,活泼顽皮的马小跳带着我,来到了数学世界。并在这里解开了一道又一道难题。例如开空调,天冷了,三家人都开空调,但大家一起开的时候功率大,线路承受不起,因此大家要想办法解决实际的苦难,大家把难题扔给了马小跳处理,马小跳严肃而又认真地考虑问题,并又做了实际的考察,最后合理解决了大家的问题。原来空调在同样的功率下可以计算出它的用电量,4台空调是一样的功率下,假设3台空调同时开,每天可以开24小时,用电量等于24×3=72小时,现在平均4台空调上,每台可以用72÷4=18小时。我觉得好有意思。

这本书我喜欢,他把数学知识寓于故事中,让我既读了故事,又学会了知识和道理。

数学书籍读后感 篇9

数学的发展史也就是科学发展的历史。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。每一步都包含艰辛,渗透着无限的思考,在这期间,有多少人将自己的一生都奉献给了数学,给了这一门散发着无穷魅力的学科。

《数学史选讲》一书首先讲述了各种各样的记数方法,有象形文字中繁琐的数字记法,有楔形文字中造型独特的记数法,由中国古代简易的算筹记数,有玛雅以神的头像作为数字的奇异的记数法,还有沿用至今的印度—阿拉伯数码。从早期的记数制度演变中不难看出,就连数字的创造都是艰辛的,在那个时候,如何发明一种便于使用、耐于使用的记数法,是建立数学学科的至关重要的基础。可以说,若然没有了人类对数字以及记数制度这种最初的研究探索,力求创造出一种最为简易方便的记数法,往后数学的研究便加倍了曲折、加倍了困难。

而在漫长的数学发展史中,最重要的莫过于无数为此奋斗一生的数学家,因为有了他们的辛酸血泪,有了他们的严谨态度和锲而不舍的探索精神,才为数学打下了坚实的基础,从而给平面解析几何、微积分、无穷集合论等等的数学分支创造了诞生的机会。然而数学的发展史曲折的、艰辛的,数学家的研究里程更是如此。他们花尽一生的心思换来的创新思维和超时代理论,大多数在他们的有生之年都得不到世人的认同。希帕苏斯向毕达哥拉斯学派的其他成员发表他对不可公度性的发现时,惊恐不已的成员将他抛进了大海;伽罗瓦提出的强有力的群论多次提交给科学院,最终得到的却是“完全无法理解”的评论;创造惊人的无穷集合论的康托尔最后带着诸多遗憾和无限的苦闷离开了人世;最怀才不遇的便是中学数学家阿贝尔,他经过无数努力最终证明了千古谜题——五次或以上的代数方程没有一般的求根公式,却遭到了一系列的冷遇,就连“数学王子”高斯看到论文的题目只说了一句“太可怕了,竟然写出这种东西来!”便连其正文都没看就把论文扔到了书堆里,尽管当时柏林大学已经认识到他的才华并任命他为数学教授,但阿贝尔早已在病魔侵袭的凄凉中与世长辞了。

尽管如今他们的理论得到世人的称赞,但在当初他们却受尽嘲笑与唾骂,他们不像当时就闻名于世的数学家那样,一有新的理论产生便受到全世界的重视,然后在钦佩与荣耀的光芒下继续他们的研究。虽然如此,他们仍旧坚定不移地相信自己,为自己的数学事业独立奋斗,深入探索,进一步发展和完善自己的理论。就如康托尔那番充满信心的话语:“我的理论坚如磐石,任何想要动摇它的人都将搬起石头砸自己的脚。”这种自信与坚定无不让人敬佩。

而许多的数学家都有一个共同点,就是他们的知识层面除了数学以外,还有其他的多个领域。譬如,泰勒斯是古希腊最早的数学家、哲学家,他几乎涉猎了当时人类的全部思想和活动领域;费马有丰富的法律知识,精通多门语言;莱布尼茨学习了拉丁文、希腊文、修辞学、算术、逻辑、音乐,还广泛阅读并研究了大量哲学和科学着作;在欧拉的工作中,数学紧密地和其他科学的应用、各种技术应用以及公众的生活联系在一起,它常常为解决力学、天文学、物理学、航海学、地理学、大地测量学、流体力学、弹道学、保险业和人口统计学等问题提供数学方法。由此可见,想要获得在一个学科的研究的成功,不仅需要精通该学科的知识,还需要学习其他学科、领域的知识,综合运用,才能更好地让这些知识为自己的研究服务。

自信、坚定、还有多领域的知识固然重要,但老师对他们的帮助也不可多得。牛顿在巴罗教授的课程中得到研究流数的灵感,欧拉继承微积分权威约翰·伯努利的衣钵成为“分析的化身”,阿贝尔在老师霍尔姆伯的鼓励与指导下,破解了五次或以上代数方程公式求解的未解之谜,伽罗瓦被里查德教授发现为千里马,成为了群论的开山祖师,康托尔师从库默尔、魏尔斯特拉斯和克罗内克等着名数学家,创立了无穷集合论,而华罗庚更是当年被熊庆来发掘,如今他又发掘了陈景润。一位伟大的`数学家背后往往有一位劳苦功高的老师,也许他们的老师如今已不为人所知,但他们所做出的努力与教导并不亚于这些数学家,正因有了他们耐心的教导,给予的莫大支持、鼓励,才给了他们展露锋芒的机会,而这些数学家虚心从师的精神也值得我们学习、效仿。

除此之外,从数学家的努力探索之中,我们可以发现数学研究所必需的过程。首先,要从细微的事情中发掘数学的道理、发现问题的存在,又或是对某一问题产生莫大的兴趣与研究精神。这一步许多人都能做到,就像牛顿对一个掉下来的苹果做出思考,从而创造万有引力定律一样,在我们的日常生活中,我们都能对一些平常事物提出问题,在遇到一些难题的时候有种想攻破它的冲动。然后,必须锲而不舍地做出深入的探究。这一步往往只有少数人能够做到,但这偏偏就是最重要的一步,缺乏了它,前面的一切苦劳都只是白费。在遇到困难面前,依然能够怀有当初的冲动与勇气想要征服它的,往往就是伟大的开始、成功的关键。但只有这份冲动与勇气是不够的,一位伟大的数学家,还必须拥有创新的精神,有对人们根深蒂固思想做出怀疑的精神,勇于打破个人崇拜与教条主义,创造出自己的新思想,就像笛卡儿对坐标系的建立,牛顿和莱布尼茨对微积分的创立,高斯对非欧几何的确立,伽罗瓦对群论这一新概念的创造,康托尔对无穷集合论的坚信等等,他们之所以能够成为受万人瞩目的数学家,是与他们的创新思维分不开的。

总的来说,这些数学家成功的经验教会了我们学生在现阶段应如何做好准备,迎接未来的挑战。在思想上,我们应该培养创新思维、自信心、对自我坚定的信念、以及面对困难毫不畏惧的精神。在行动上,要虚心从师,不耻下问,积极学习多方面的知识,做到对知识的融会贯通,运用到日常生活的事情中。

“刘徽的割圆术比古希腊的穷竭法要晚几百年”、“笛卡儿和费马不约而同、殊途同归地建立解析几何”、“牛顿和莱布尼茨两位奠基人不约而同的努力,使得微积分作为一门独立学科建立起来”……在数学史的发展历程中,不少相同的研究成果都重复地被人类发掘,这种数学研究的时间差无疑耽误了数学的发展,重复地为同一个问题而努力,却不知道事实上他人早已解决,如果世界能够更早地融合为一体,便能更好地互相交流数学文化,共同研究、共同进步,那么就不需要花上几百年甚至更长的时间重复地走同一条弯路,而能更快地推动数学的发展,也许世界数学的发展速度就不只现在的步伐了。

而此书也提到了数学创立的一个条件:“在实用的技术发明之后,那些并不直接为生活的需要或满足的科学才会产生出来。它首先出现在人们有闲暇的地方,数学科学最早在埃及兴起,就是因为那里的祭司阶层享有足够的闲暇。”这说明了“闲暇”对于科学兴起的重要性。的确,当温饱问题没有解决,脑力劳动与体力劳动尚未分开时,人们无暇去发明科学,只有当享有闲暇时,人们才有足够的时间与精力花费在科学的创造中,才会从最初的玩弄数字起,逐渐深入探究,从生活琐事中发现数学的问题,从而创造谜题,再去解决,这样一步步地走来,才会有如今的数学学科。要是没有了闲暇,很可能就没有了后面的一切。同样,作为学生的我们也需要空出闲暇来认真研究数学,如果连每天的作业都难以按时完成,那么还哪说得上去破解数学的难题呢?

数学的发展还很长久,还有许多路要走,我们就像牛顿说的那般,只不过是在海边玩耍的小孩,在我们面前仍有一片未知的真理的海洋,数学的无穷魅力就埋在这里面,等着我们去发掘,等着我们去探索。

数学书籍读后感 篇10

今年暑假妈妈带我到市大众书局,向我推荐了《趣味数学》这本书,刚看到书名我想又是一本辅导类书,有什么好看的。妈妈建议我先看一看再说,读着读着我就被书的内容吸引住了,书的内容真的很有趣,难怪叫趣味数学。

这本书用很多个有趣的数学游戏活动,介绍了富有教育意义的数学故事,如摆树叶、军事游戏、填幻方到从幻方中寻找"和"为已知的四维数组、根据实际问题列方程组、收集数据、整理数据、分析数据……每一次数学活动都是培养思维能力、想象力、实践力的最好课外训练。它寓教于乐,是对我们小学生进行有趣的、益智训练的好书。

假期中我一有空就拿出来读,书里的很多游戏都是我和爸爸、妈 妈一起合作完成的,在玩中学,在学中玩,时间不知不觉就过去了,在轻松、愉快的气氛中,我不仅学到了许多数学知识,还深刻体会到了父母对我爱。现在我已经迷上了《趣味数学》,和它成为好朋友了,

《趣味数学》真的是太有趣了。

数学书籍读后感 篇11

每当我们正在学习的时候,总会遇到一些困难,总会说:"读书一点也没劲,一点劲也没有。"

今天,我看了一本书名叫趣味数学大王,里面全是一些有趣的故事,每当同学们在学习的时候,学累了就可以看这本书,它可以把枯燥 的知识融合进有趣的故事来,会怎样呢?

趣味数学大王这本书唤起了我们对数学的兴趣。这本书里,好象把我带到了童话世界:每一个小故事都有有声有色的图画,非常富有情趣,具有很强的可读性。每个故事中含有一个数学题,程度有浅有深,在故事的最后,有这道题的正确解法和答案巧妙的告诉你的……

在这个社会上数学是一门重要的基础学科。它的重要性非常大的,曾有这样的三句话:数学是建设四化的武器,数学是其他科学的基础,数学是锻炼思维的体操。里面的故事简直是多的事,比如说有着这样的一个有趣的故事,驴和马一块驮着粮食,去城市里,驴才走了一会儿,就不肯走了,驴对马说:"马大哥你背的有多重呀?"马就出了给驴的题目,再说驴算出了马驮的有多重,自己算出了自己驮的有多重,在也不叫苦叫累。

你听完了,你一会懂得了一些数学知识,你一定还会懂得一些故事里的一些教你做人的道理。

我读完了这本书,感到了这本书写的非常好,这本书还看展了 "讲故事,做习题"的活动,学习是紧张的,更应该是有趣的,希望小朋友们看了这本书学的轻松,学的有劲,取得最好的学习效果。

数学书籍读后感 篇12

原来数学在生活中也有这么大的用处:在《智斗蜘蛛精》里,八戒被4个女妖围在了中间他得先打死头儿蜘蛛精但他不知道她变换以后的位置,然而数学观察到了:位置是按顺时针方向转动的,每变4次又回到原来的位置,根据这个规律能列出一个除法算式:(变阵的次数=n)n÷4=□…□这个余数是几,就是几号位置。

还有一次在《悟空戏猕猴》那一集里,1~66报数,(以一、二、一、二的顺序报凡是报以的都有可能是自己,直到最后那个才是自己,不过悟空让数学猴不能报数)悟空要数学猴一次把自己指出来数学猴马上就说:“64号,你是悟空,你出来吧。”原来他是这样想的:有五只羊,9只羊一排,最后留下的一定是8号他的规律是2,4=2×2,8=2×2×2……对于66来说,具有最大特点的数就是64因为64=2×2×2×2×2结果这才找出了孙悟空。

所以,我以后一定要好好学数学,解决生活中的一些小问题。

数学书籍读后感 篇13

这个暑假爸爸给我买了一《数学荒岛历险记》。

这书一共有十小本,我看了很长时间才看完,现在给大家介绍一下里面的人物,里面有依依、罗克、LIBIQ、花花公主、国王等主要人物,就是这些人出了很多有趣的题目。

有一个怪兽了数字王国,它看见了数字5、24、44却只吃了24和44;14、35、100去攻击怪兽,怪兽只吞了100下去,35却安然无恙,为什么怪兽不是所有的数字都吃呢?

我想了很久很久也没有想出来,看到最后,才明白原来怪兽只吃4倍数,24、44、100是因为他们都是4的倍数,而其他的都不是4的倍数,所以怪兽不吃它们,很有趣的题目,呵,所以更让我知道数字没有一定很死板的答案,要多动脑筋多思考一定有很多答案,开学欢迎同学们一起来看《数学荒岛历险记》。

奇妙的数学王国读后感

奇妙的数学王国读后感1

假期里我读了《奇妙的数王国》这本书,书中有很多数学故事,使我受到了启发,我的数学成绩不是很好,看了这本书,我渐渐的对这些数字有了很大的兴趣, 并和数字们交上了朋友。

小华,小强,小毅等个个都是数学天才,整数王国、分数王国、小数点王国,三角形家族、四边形家族,创造了一个又一个的数字故事,数字7和数字8度过了一个奇妙的历险。

在这里孙悟空竟然也有数学问题,孙悟空学好了数学,师徒四人乘着数学往西天取经去。这些数字真是太神奇了!

我喜欢小小的字母a。因为它什么数字都能变得出来,连最奇妙的∏都拿它没办法,字母a的小尾巴一翘一翘的,真可爱,我也想变成小小的字母a。

小数点王国里居住着无限循环小数,零国王的国家里,发生了许多奇妙的事件。

数学王国可真奇妙,它让我了解了方程,让我懂得了有理数、无理数,偶数、奇数,更让我懂得了生活中处处都离不开数学。

此外,我还认识了相亲数。220和284就是一对相亲数。220的所有真因数相加就是284,284的所有真因数相加就是220。相亲数让我知道了:你中有我,我中有你,相亲相爱,永不斗争。

看了这本书,我了解了数学的许多奥秘,数学在我眼里变得更奇妙了,我对数学的兴趣又增加了一层。

篇八:《奇妙的数王国》读后感

昨天,妈妈送给了我一本书,叫做《奇妙的数王国》,我先看了这一篇《一场莫名其妙的战争》。

这一篇故事讲的是:弟弟小华和哥哥小强听到了枪炮声,就跑到了山顶上,他们看到有两支军队正在打架,一支军队穿着红色军装,他们胸前都有一个数字,这些数字都是偶数,另一支队伍穿着绿色军装,他们胸前也都有一个数字,但是,这些数字都是奇数。这时,小强和小华听到草丛里有人哭泣,于是小强就扒开草地一看,有一个衣着华丽的胖老头,他就是正在哭泣的人。

小强发现这个人胸前的数字是0,就以为他是0号,其实那个人告诉小强他就是0,那个人就是零国王。这时,响起了嘹亮的军号声,接着,偶数队伍中亮出了一面大红旗,突然,出来了一位军官,他的胸前写着一个“2”字,他就是偶数军团的2司令,在奇数这边也有一个军官,他的胸前写着一个“1”字,他就是奇数军团的1司令。这时,1司令和2司令已经让战斗进入了高潮。

其实,1司令和2司令是零国王的左膀右臂。这时,小强就问零国王:“是不是最小的正整数就能当司令?”其实不是这样的,1司令和2司令都有一种很特殊的能力。2司令逼着1司令和零国王把偶数叫做男人数,把奇数叫做女人数,可1司令和零国王都不同意,2司令这下可发火了,他就让战争继续开始。

奇妙的数学王国读后感2

这本书的作者是著名科普作家李毓佩,这本书还是一套丛书中的一本,一套共22本呢!这本里包含《奇妙的数王国》、《猪八戒新传》、《长鼻子大仙》、《熊法官和猴警探》、《梦游“零王国”》、《有理数和无理数之战》、《小数点大闹整数王国》、《7和8的故事》和《鹰击长空》十篇故事。

这本书的故事一个个都既形象又生动,这使得我废寝忘食地看它。看完这本书后,我对数学的兴趣更浓厚了,更爱看李毓佩的数学故事了,更想要数学故事书了。

你想要这本书吗?如果想,就去买一本吧!

奇妙的数学王国读后感3

自从我读了这本 “ 奇妙的数王国 ” 之后 ,我就学会了许多许多的关于数学的知识。

在这本书里面 ,通过用童话故事和有趣的讲解关于数学方面的知识 ,让我们了解到很多的数学知识 ,读了一个故事后 ,就会让我知道了数学的一个知识 ,当我做这个题的时候 ,就知道了这题是怎么做的 ,当我把这整本书读完后 ,我就学会了很多很多的数学的知识 ,比如 :在字母表中 ,字母 “a ” ,在数学里 ,它是一个重要的人物 ,它想代替哪个数 ,就可以代替那个数 ;零乘以任何不是零的数都得零……

在这本书中 ,让我明白了一个道理 ,数学其实并没有那么的不难 ,如果你用心的去学 ,就会觉得数学题根本不难 ,而且 ,非常有趣 。

奇妙的数学王国读后感4

在寒假放假期间回广东的路上,我看了一本“奇妙的数王国”,我发觉原来数学也是这么有趣,原来数学也并不枯躁乏味的,原来数学中的每一个数也是有生命的,原来数学中也可以找到童话故事中的奇幻情节。

读了这本书,我认识到了毕达哥拉斯,他是古希腊的数学家; 我认识了费马,他是17世纪法国的数学家;我认识了欧拉,他是18世纪瑞士数学家;我还认识了16岁的巴格尼,他是1886年的意大利数学家,原来他们都发现了相亲数。

再往后看,哈哈,我又发现了一个好玩的东西,它叫作“小数点”,原来,一旦被小数点点上的数后,比1小的还有千千万万个数,如“0。678,0。356,0。442”,这些都是比1小的哦。

原来,在课外书上数学也可以学到这么多东西。

奇妙的数学王国读后感5

读了《奇妙的数王国》,我感到了数学的乐趣,这本书将抽象、枯燥的数学知识变得有趣。什么事都离不开数学。

这本书讲了:小强和小华一起解数学难题,让数王国变得平静。这本书中还有0国王,1司令,2司令,还有许多有趣的故事“零国王苦斗跳蚤 ”、“速算专家数8 ”、“追杀小数点”、有理数和无理数之战、神奇的小数点等好玩的故事。

作者讲的故事深深的.印在我的脑海里,读完这本书,我对数学有了更深刻的认识,原来我认为枯燥无味的数学,竟然变得如此有趣,吸引我看下去,小朋友们,快来读这本书吧!从这本书中你们可以热爱数学。

奇妙的数学王国读后感6

今天,我读了一本名叫《奇妙的数王国》,这本书非常好看,讲了许多的数学童话,寓教于乐,能激发我们对数学的兴趣,里面的故事很有趣,也很搞笑。

说了猴法官和熊警探联合破案,除暴安良,保护动物的故事,用智慧与狐狸等狡猾的动物轮番交战,最后以猴法官的机智勇敢而告终。

从这本书我懂得了:做班干部,一档尽到自己应该做的,不是拿权力来约束别人,要起带头作用。

做一个品学兼优的好孩子。

奇妙的数学王国读后感7

寒假里,我和妈妈一起读了李毓佩教授写的《奇妙的数王国》这本书,这是一本数学童话故事书。我很喜欢这本书,妈妈也说写的很好。

这本书一共有10个故事,都和数学有非常密切的关系。李教授用讲故事的方法把枯燥的数学知识讲的深入浅出,读起来轻松自如。

我最喜欢“鹰击长空”系列中的“空中大决战”、“鸦鸡搏杀”和“最后一战”这三个故事。它们讲了小鹰阿尔法、褐马鸡跟秃鹫、秃鼻乌鸦和红脚隼之间的战斗。其中我印象最深的是阿尔法和秃鹫的最后一战:阿尔法厉声说到:“我让你两招儿,你现在投降还为时不晚,不然的话,我要在你身上啄许许多多的洞!”“啄洞?”秃鹫问,“你准备啄多少个洞呢?”阿尔法说:“在你头和背共啄4个洞,在头和腹共啄6个洞,在背和腹共啄8个洞。你算算一共啄几个洞?”秃鹫算了半天也没算出来。“这个容易算。”阿尔法说,“头+背+=4,头+腹=6,背+腹=8。三个式子相加有2(头+背+腹)=4+6+8=18,所以头+背+腹=9。不多,只有9个洞。”秃鹫吓得一缩脖子,他自言自语地说:“不成,我和他拼啦!”秃鹫煽动翅膀加速向阿尔法冲去。阿尔法缺身体腾空,飞到了秃鹫上面乘势在秃鹫背上狠狠啄了一下。“砰”的一声,秃鹫重重地摔在地上,再也没有爬起来。

这本书写得太精彩啦!看完它让我明白,原来我认为枯燥无味的数学竟然变得如此有趣,让我在愉悦中掌握很多数学知识。虽然有些知识我还没有学到,不是很明白,但我依然喜欢这本书。我也很喜欢和妈妈一起读书的时间,看到好笑的地方,我们会一起哈哈大笑,我还会继续和妈妈一起读书的。

奇妙的数学王国读后感8

我最近看了一本非常有趣的书,是《奇妙的数王国》作者是让我们尊敬的李毓佩教授,这本书主要让我们知道数字的作用和数字在生活中是不可缺少的东西。

这本书是由一个个小故事组成的,而每个小故事都有着大道理,就说《神秘数》的故事。神秘数就是a,故事通过假5和真5都说对方是假的,让数居民们来判断谁是真5,结果——5、1/5、0。1都无法辨认。——5跳进来,其中的一个围着——5转了一圈,变成了两个——5,它又围着无理数π转了一圈,变成了两个π,大家议论纷纷:“看来这个坏数是一个本领高强,变化莫测的神秘数。”故事的结尾用小毅的话,让我明白了代数abc的意思,他解释说:“这个神秘数就是他代数书中丢失的a。所谓代数,就是用abc来代替具体的数。”通过这个故事,告诉我a可以表示正数,又可以表示负数,还可以表示0。

这本书 用少年儿童喜闻未见的童话故事形式,将抽象,枯燥的数学知识讲的深入浅出,读起来轻松自如。这本书不仅我喜欢看,连我的妈妈也喜欢看。

喜欢的话,朋友们有空也去读一下吧!

奇妙的数学王国读后感9

《奇妙的数王国》是一本关于数学的故事书,书里有10个故事:奇妙的数王国、猪八戒新传、长鼻子大仙……都很有趣。

我最喜欢“奇妙的数王国”,故事是这样的:一天,小强和他的弟弟小华来到了数王国做客,游览数王国时遇到了一点小麻烦,一次大地震,小数们被震变了形,小强把它们治好了。这本书我很喜欢。

高斯数学家故事读后感

1. 数学家高斯的一个小故事

德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。

长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。

他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。

“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

2. 高斯数学家的小故事50字

1、高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

2、高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

3、1796年高斯19岁,发现了正十七边形的尺规作图法, 解决了自欧几里德以来悬而未决的一个难题。 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 。

4、1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。

5、1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

(2)高斯数学家故事读后感扩展阅读:

高斯个人的生活因为他的第一任妻子Johanna Osthoff在1809年早逝,以及他的孩子Louis也相继死去而显得黯然失色。高斯跌入一个他从来没有完全恢复的忧郁深渊。他后来再婚,对象是他第一任妻子的朋友,名叫Friederica Wilhelmine Waldeck,但通常称作Minna。

当他的第二任妻子在长期的病痛后死于1831年时,他的其中一个女儿Therese接手了整个家庭并且照顾高斯直到他的生命结束。他的母亲则从1817年居住在他家直到1839年她死去。

高斯有六个小孩。高斯的所有小孩当中,据说Wilhelmina最接近他的天赋,但她年轻时就去世了。高斯与Minna Waldeck也有3个小孩:Eugene (1811–1896), Wilhelm (1813–1879) and Therese (1816–1864)。Therese照顾著整个家庭直到高斯去世,而她结婚。

高斯最后与他的儿子发生了冲突。他不希望他的任何一个儿子进入数学或科学的"怕玷污了家人的名字"的想法或担心里。高斯希望Eugene成为一名律师,但Eugene想学习语言类别的。而Eugene与高斯的另一个争执是-高斯拒绝支付由Eugene所举办的派对的费用。

Eugene很生气,所以在大约1832年时移居美国,而他在那里是相当成功的。Wilhelm也定居在密苏里州,从一开始的农民工作成为了在圣路易斯相当富有的制鞋企业。Eugene花了很多年得来的成功,抵消了他在高斯的朋友与同事间不好的声誉。也在9月3日看到了罗伯特高斯给菲莉克斯克莱因的信。

3. 数学家的故事读后感500字

[数学家传记《数学家的故事》读后感500字]暑假里,我读了一本书,书的姓名叫《数学家的故事》,讲述了许多数学名人的故事,数学家传记《数学家的故事》读后感500字。好比毕达哥拉斯、阿基米德、高斯…其中,我最感兴趣的是有关祖冲之的故事。祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过相当长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。可是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,冲之寸步不让,和他唇枪舌剑的辩论,读后感《数学家传记《数学家的故事》读后感500字》。最终,《大明历》没通过,后来在祖冲之往世后10年,《大明历》才颁布实行。读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正由于他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,全部离不开"坚持"两个字。不由地,我想到了许多人,有文化名人、爱国将士,和我身边的同学。读《数学家的故事》让我更加爱数学,更让我明白得了许多道理。
〔数学家传记《数学家的故事》读后感500字〕随文赠言:【这世上的一切都借希望而完成,农夫不会剥下一粒玉米,如果他不曾希望它长成种粒;单身汉不会娶妻,如果他不曾希望有孩子;商人也不会去工作,如果他不曾希望因此而有收益。】

4. 数学家高斯的故事

德国大数学家高斯(CarlFriedrichGauss1777-1855)是德国最伟大,最杰出的科学家,如果单纯以他的数学成就来说,很少在一门数学的分支里没有用到他的一些研究成果。

贫寒家庭出身

高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色各样的杂工,如护堤员、建筑工等等。父亲由于贫穷,本身没有受过什么教育。

母亲在三十四岁时才结婚,三十五岁生下了高斯。她是一名石匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所知道的一些知识传授给他。而父亲可以说是一名”大老粗”,认为只有力气能挣钱,学问对穷人是没有用的。

高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说他在还不会讲话的时候,就已经学会计算了。

他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算
出来。

父亲念出钱数,准备写下时,身边传来微小的声音:“爸爸!算错了,钱应该是这样”。

父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎么样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。

另外一个著名的故事亦可以说明高斯很小时就有很快的计算能力。当他还在小学读书时,有一天,算术老师要求全班同学算出以下的算式:1+2+3+4+……+98+99+100=?

在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其它孩子算到头昏脑胀,还是算不出来。最后只有高斯的答案是正确无误。

原来:1+100=101,2+99=101,3+98=101……50+51=101

前后两项两两相加,就成了50对和都是101的配对了即101×50=5050。

按:今用公式表示:1+2+……+n

高斯的家里很穷,在冬天晚上吃完饭后,父亲就要高斯上床睡觉,这样可以节省燃料和灯油。高斯很喜欢读书,他往往带了一捆芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉卷成的灯芯,用一些油脂当烛油,于是就在这发出微弱光亮的灯下,专心地看书。等到疲劳和寒冷压倒他时,他才钻进被窝
睡觉。

高斯的算术老师本来是对学生态度不好,他常认为自己在穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴。但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高斯有什么帮助。

他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴和比他大差不多十岁的老师的助手一起学习这本书。这个小孩和那个少年建立起深厚的感情,他们花许多时间讨论这里面的东西。

高斯在十一岁的时候就发现了二项式定理(x+y)n的一般情形,这里n可以是正负整数或正负分数。当他还是一个小学生时就对无穷的问题注意了。

有一天高斯在走回家时,一面走一面全神贯注地看书,不知不觉走进了布伦斯维克(Braunschweig)宫的庭园,这时布伦斯维克公爵夫人看到这个小孩那么喜欢读书,于是就和他交谈,她发现他完全明白所读的书的深奥内容。

公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖的领地有一个聪明小孩的故事,于是就派人把高斯叫去宫殿。

费迪南公爵(Duke Ferdinand)很喜欢这个害羞的孩子,也赏识他的才能,于是决定给他经济援助,让他有机会受高深教育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反对孩子读太多书,他总认为工作赚钱比去做什么数学研究是更有用些,那高斯又怎么会成材呢?

高斯的学校生涯

在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名的学院(程度相当于高中和大学之间)。在那里他学习了古代和现代语言,同时也开始对高等数学作研究。

他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积分理论。

1795年10月他离开家乡的学院到哥庭根(Gottingen)去念大学。哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯。许多外国学生也到那里学习语言、神学、法律或医学。这是一个学术风气很浓厚的城市。

高斯这时候不知道要读什么系,语言系呢还是数学系?如果以实用观点来看,学数学以后找生活是不大容易的。

可是在他十八岁的前夕,现在数学上的一个新发现使他决定终生研究数学。这发现在数学史上是很重要的。

我们知道当n≥3时,正n边形是指那些每一边都相等,内角也一样的n边多边形。

希腊的数学家早知道用圆规和没有刻度的直尺画出正三、四、五、十五边形。但是在这之后的二千多年以来没有人知道怎么用直尺和圆规构造正十一边、十三边、十四边、十七边多边形。

还不到十八岁的高斯发现了:一个正n边形可以用直尺和圆规画出当且仅当n是底下两种形式之一:k=0,1,2……十七世纪时法国数学家费马(Fermat)以为公式在k=0,1,2,3,……给出素数。(事实上,目前只确定F0,F1,F2,F4是质数,F5不是)。

高斯用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那么的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。

1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。这结果数学上称为“代数基本定理”。

事实上在高斯之间有许多数学家认为已给出了这个结果的证明,可是没有一个证是严密的,高斯是第一个数学家给出严密无误的证明,高斯认为这个定理是很重要的,在他一生中给了一共四个不同的证明。高斯没有钱印刷他的学位论文,还好费迪南公爵给他钱印刷。

二十岁时高斯在他的日记上写,他有许多数学想法出现在脑海中,由于时间不定,因此只能记录一小部份。幸亏他把研究的成果写成一本叫《算学研究》,并且在二十四岁时出版,这书是用拉丁文写,原来有八章,由于钱不够,只好印七章,这书可以说是数论第一本有系统的著作,高斯第一次介绍“同余”这个概念。

5. 数学家高斯的小故事


从一加到一百
高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。
高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。
高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。
七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

更多信息可以关注科学高分网数学家高斯的故事

6. 数学家故事读感200字

高斯是德国著名的复大数学家,在他制10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=?
这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!”
老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050
在高斯三岁夏天时,有一次当他爸爸正要给工人发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

7. 关于数学家高斯故事的感受作文150字

1、高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师回出了一道算答术难题:计算1+2+3+……+100=?
这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!”
老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050
2、在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

8. 三篇有关数学家的故事读后感共300字

最敬佩数学家是华罗庚.他聪明、好学、勤奋、爱国,是我国杰出的数学家. 华罗庚很聪明、好学.1910年11月12日,华罗庚生于江苏省金坛县.他家境贫穷,决心努力学习.上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?”大家正在思考时,华罗庚站起来说:“23.”他的回答使老师惊喜不已,并得到老师的表扬.从此,他喜欢上了数学. 华罗庚很勤奋.他上完初中一年级后,因家境贫困而失学了,只好替父母站柜台,但他仍然坚持自学数学.经过自己不懈的努力,他的《苏家驹之代数的五次方程式解法不能成立的理由》论文,被清华大学数学系主任熊庆来教授发现,邀请他来清华大学;华罗庚被聘为大学教师,这在清华大学的历史上是破天荒的事情. 华罗庚很爱国. 1936年夏天,已经是杰出数学家的华罗庚,作为访问学者在英国剑桥大学工作两年.而此时抗日的消息传遍英国,他怀着强烈的爱国热忱,风尘仆仆地回到祖国,为西南联合大学讲课. 我一定要好好学习.像华罗庚那样,成为一个伟大的数学家;像印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的.高斯长大后,成为一位很伟大的数学家. 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的.

数学家的故事读后感

数学家的故事读后感(精选13篇)

  当阅读了一本名著后,大家对人生或者事物一定产生了许多感想,不妨坐下来好好写写读后感吧。那要怎么写好读后感呢?下面是我精心整理的数学家的故事读后感,欢迎阅读,希望大家能够喜欢。

  数学家的故事读后感 篇1

  近期,我看了一本书,名字叫《数学家的故事》,其中最让我敬佩的就是华罗庚,这位伟大的数学家所发生的故事了。

  华罗庚因病左腿残疾,所以,他平时走路都需要左腿先画一个大圆圈,右腿再迈上一小步。对于这种奇特而费力的步伐,他曾幽默地戏称为“圆与切线的运动”。在逆境中,他顽强的与命运抗争。增发过誓言,说:“我要用健全的头脑,来代替我这不健全的腿!”凭着这种顽强的精神与毅力,他终于从一个只有初中毕业文凭的青年成长为一代数学大师。华罗庚一生硕实累累,是中国解析数论、典型群、矩阵几何学、自导函数论等方面的研究者和创始人。其着作《对垒素数论》,更成为20世纪数学论着的经典。华罗庚因为有了这种对生活的坚持不懈以及充满希望的精神,所以,他在逆境中登上数学的最高峰。

  是啊,学数学少不了的是那种顽强的精神。我一定会向华罗庚,这位伟大的数学家学习决不放弃的毅力!

  数学家的故事读后感 篇2

  今天,我读了《数学家的故事》,让我印象最深的是数学家华罗庚。

  华罗庚(1910年——1985年)出生在江苏省金坛县,小时候是个调皮、贪玩的孩子,可是对数学却很感兴趣。他在读完中学后,因为家里贫穷,交不起学费,从此华罗庚失学了,他回到家后只能依靠卖点小东西生活。

  不能上学并没有阻挡华罗庚爱数学的势头,他从此以后便自己学,一年到头华罗庚几乎每天都要用十几个小时来学习,勤奋好学的他走进了数学王国。

  1930年在熊庆来教授的帮助下,华罗庚到了清华大学数学系当一名图书管理员,他一人干几个人的事,却还在继续自学。功夫不负有心人,华罗庚终于成了我国著名的数学家!

  读了《数学家华罗庚的故事》我明白了,一个人不论干什么事都要坚持不懈,那样才可以实现自己的梦想!

  数学家的故事读后感 篇3

  今天我读了一本书叫数学家的故事,其中伟大数学家祖冲之推算圆周率的故事给我留下了深刻印象。

  圆周率就是指圆的周长和直径的长度比,这是一个无限不循环小数,各位数字的变化又没有规律,计算它是一件很不容易的事。祖冲之从圆的内接正六边形开始,先算内接正十二边形的边长,再算内接正二十四边形边长……边数一倍又一倍地增加,一共要翻十一翻,直到算出了内接正一万二千二百八十八边形的边长,才能得到这样精密的圆周率,这是多么不容易啊!

  看了这个故事,我深深地被祖冲之这种精神所感动,要是没有熟练的技巧和坚强的毅力,他怎能完成这上百次繁难复杂的运算?在想想自己平时做数学题的时候,遇上复杂的题目几次做不出来就想放弃,缺少了祖冲之这种刻苦专研的精神。遇到简单的题目时,就自以为自己都会了,没有好好计算,结果出现了不该有的错误。如果祖冲之像我们这样马虎,那他圆周率的精确度该差多远啊!

  其实,无论做什么事情都离不开“认真”和“仔细”四个字。所以,我们对待每件事都要有像祖冲之算圆周率那样的认真态度,只有这样,才会有让你愉快的好结果。

  数学家的故事读后感 篇4

  读《数学家的故事》让我更加喜欢数学,更让我懂得了许多道理。

  我最佩服的数学家是苏步青。因为他有着不懈的努力与追求,因为他有着热切的爱国精神。他的一生不知道算过了多少道算式、多少道题目。他热爱祖国,热爱数学,他把他对祖国的爱恋化成了一段段令人赞叹的事例,但是我想,数学家苏步青的伟大事例也是跟他的老师杨老师一席话有着密不可分的作用。

  杨老师曾对苏步青全班同学说过:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。

  所以我想,苏步青的精神使我敬佩,可是他的老师更令人记忆深刻。我会像苏步青学习。每一天,用自己的努力化成一个又一个的算式。

  数学家的故事读后感 篇5

  暑假里,我读了一本书,书的姓名叫《数学家的故事》,讲述了许多数学名人的故事。好比毕达哥拉斯、阿基米德、高斯…其中,我最感兴趣的`是有关祖冲之的故事。祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过相当长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。

  可是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。最终,《大明历》没通过,后来在祖冲之往世后10年,《大明历》才颁布实行。读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正由于他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,全部离不开"坚持"两个字。不由地,我想到了许多人,有文化名人、爱国将士,和我身边的同学。读《数学家的故事》让我更加爱数学,更让我明白得了许多道理。

  数学家的故事读后感 篇6

  愉快的国庆宛如一条唱着欢歌的小河,不时涌出令人心旷神怡的浪花,而《数学家的故事》这本书则是其中最大最美的浪花。

  这本书的作者叫孙健,也是一个厉害的特级教师。他在《数学家的故事》这本书里讲了阿基米德用数学战胜罗马战舰,牛顿在干农活时沉迷于数学问题,欧拉巧思妙想帮爸爸扩大羊圈,高斯10岁时就能应用等差数列求和……这本《数学家的故事》带领我们在数学故事的长廊中,让我们爱上数学,也让我对数学有了更深一层的认识。

  在《数学家的故事》中,我认识了欧几里得、笛卡尔、费马等多个伟大的数学家,更是发现了牛顿的万有引力有多么的奇妙。在以前,有人说没有万有引力,他们只认为地球是正方形,是空气让物体自然坠落,如果没有牛顿,可能我们几百年后都发现不了万有引力。而牛顿由于对科学有着严谨的态度,又有着求实的好习惯,经过不断的仔细研究,发现了牛顿三定律。让我们的科技又向前迈了一大步,话说数学是科技之母,所以大家要像这些伟大的数学家学习,将来科技才会越变越发达!

  当我读到阿基米德的故事时,我仿佛看到了阿基米德正在聚精会神的思考要解决的问题,目不转睛的盯着他的图,丝毫没有注意到,城池已经被罗马人攻破了,虽然有这么大的动静,可是阿基米德太过沉迷于自己的问题,丝毫没有察觉,这是多么高尚的品质啊!他的专研精神令我佩服!

  这本书里还有很多像阿基米德一样的数学家,他们热爱数学,沉迷数学,才有了如今的辉煌。所以让我们好好学习数学,让这份辉煌,永远传承下去。

  数学家的故事读后感 篇7

  今天,我读了一本数学家的故事里面介绍了一位著名的数学家—祖冲之。

  祖冲之是我国南北朝时期的数学家、天文学家。祖冲之的父亲和祖父都爱好数学,他就是生活在这样的家庭里,从小就读了很多书。他特别爱研究数学和天文历法,经常观察太阳和星球的情况。宋孝武帝听到他的名气,很喜欢他。派他去做官,但是他对做官不敢兴趣,还是专心的研究数学,这种精神多值得我们学写呀!他还创制出了一部新的历法——大明历。他为古代数学着作九章算术作了注释,又编写了一本缀术。在当时那样艰苦的条件下他做出了这么大的贡献,可见祖冲之是多么伟大。

  我要学习祖冲之这种勇往直前、坚持不懈的学习和研究精神。

  数学家的故事读后感 篇8

  暑假里,我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯……其中,我最感兴趣的是关于祖冲之的故事。数学是一门多彩的学科,不同类型的数学家,有着不同个性与不同的成功箴言。数学家的故事中有几个令我印象深刻,这里就来分享一个小故事:

  有一次,陶行知先生在武汉大学演讲。他走向讲台,不慌不忙地从箱子里拿出一只大公鸡。台下的听众全愣住了,不知陶先生要干什么。陶先生从容不迫地又掏出一把米放在桌上,然后按住公鸡的头,强迫它吃米。可是大公鸡只叫不吃。怎么才能让公鸡吃米呢?他掰开公鸡的嘴,把米硬往鸡的嘴里塞。大公鸡拼命挣扎,还是不肯吃。陶先生轻轻地松开手,把鸡放在桌子上,自己后退了几步,大公鸡自己就开始吃起米来。这时陶先生开始演讲:“我认为,教育就像喂鸡一样。先生强迫学生去学习,把知识硬灌给他,他是不情愿学的。即使学也是食而不化,过不了多久,他还是会把知识还给先生的。但是如果让他自由地学习,充分发挥他的主观能动性,那效果一定好得多!”台下一时间掌声雷动,为陶先生形象的演讲开场白叫好。

  从这个小故事中,我有所感悟,对于我们的学生,我们不能强硬的灌输知识,而是利用多种方法,手段,激发学生学习的兴趣,引导他们自主地学习、交流。对于知识的掌握才能更加牢固。那么怎样引导学生自主学习、交流,就需要多看有关教学方面的书以及多看名师的课堂实录,还有每节课的预设、课后的反思都要及时,在反思中改进,才能成长,进步。

  数学家的故事读后感 篇9

  我今天看了一本书,名叫《数学家的故事》。

  我最喜欢里面的阿基米德。有一次,一位国王请他去测定金匠刚做好的王冠是纯金的还是其中掺有银子的混合物,并且告诉他不能损坏王冠。阿基米德想呀起,直到有一天,当他躺在澡盆里洗澡时,他发现身体浸入水中后水盆里的水溢了出来。于是他得到启发,那么,如果把王冠浸泡在水中,根据水面上升情况算出王冠的体积与等重量金子是否相等,如果相等,就说明王冠是纯金的,假如掺有银子的话,王冠的体积就会大一些。他兴奋地从浴盆中跃出,全身赤条条地奔向皇宫,大喊着:“我找到了!找到了!”他为此发明了浮力原理。

  读完这本书,我发现了数学家有一个共同点,那就是爱钻研,爱数学,爱求证。

  数学家的故事读后感 篇10

  《数学家的故事》讲述了许多位数学家小时候的故事。其中有两篇给我印象最深,分别是《小欧拉智改羊圈》和《数学神童希帕蒂亚》。

  《小欧拉智改羊圈》讲述了欧拉爸爸设计了一个长40米,宽15米的长方形羊圈,施工过程中发现围羊圈的材料少了10米。父亲在增加材料和缩小羊圈之间难以取舍时,小欧拉想出了办法,他将长方形羊圈的长缩短了15米,宽延长了10米。经过这样一改,原来长方形的羊圈变成了一个边长25米的正方形。而正方形的周长是25×4=100米,正好比原来长方形的周长(15+40)×2=110米少了10米,这样材料刚好够用。同时正方形的面积是25×25=625平方米,也比原来面积40×15=600平方米大了一些。欧拉的方法做到了一举两得,既节省了材料,又扩大了面积。

  《数学神童希帕蒂亚》讲述了女数学家希帕蒂亚10岁时,父亲带她去测量金字塔高度的故事。在一般人的眼中,测量物体的高度是件很简单、很容易的事情。可是因为希帕蒂亚的父亲是一位数学家,他要求女儿用最简单的方法来测量,这可就不容易了。小希帕蒂亚在和父亲散步时,意外的发现自己的影子和父亲的影子重合了,由此聪明的希帕蒂亚想到了运用身高和影子长度成正比例的方法间接测量金字塔的高度。因为:人的身高/人的影子长=金字塔高/金字塔影子长,所以在已知人的身高的条件下,分别测量出金字塔影子的长度和人的影子的长度,就可以很容易的计算出金字塔的实际高度了。

  小欧拉和希帕蒂亚没有按常人固有的思路去思考问题,而是开动脑筋另辟蹊径,用别人意想不到的方法解决了生活中的难题。跟欧拉和希帕蒂亚比起来,我感到脸红。每当在学习中有了困难和问题时,我很少换一种方法去思考,总是直接求教于妈妈和老师。通过读欧拉和希帕蒂亚的故事,我深深体会到勤思考、善观察、多角度思考问题的重要。

  同学们!当我们在学习和生活中被难题所困扰时,不仿学学欧拉和希帕蒂亚,换一种方法去思考,很可能难题就迎刃而解了。

  数学家的故事读后感 篇11

  自从我读完了《数学家的故事》,脑子里就会时不时地跳出几个数学家,比如高斯、牛顿、阿基米德、华罗庚。

  我最崇拜的是约翰·伯努利,他1667年8月6日出生于巴塞尔。他不仅自己厉害,还成功教出了一大批出色的数学家,其中包括18世纪最著名的瑞士数学家欧拉、瑞士数学家克莱姆、法国数学家洛必达,以及他自己的儿子丹尼尔和侄子尼古拉二世。

  我也崇拜阿基米德,阿基米德是古希腊哲学家、数学家、力学家、天文学家,与牛顿、高斯并称为世界三大数学家。阿基米德在罗马士兵攻打自己的国家时,没有像其他人一样急着逃跑,因为他还在桌子上聚精会神地解一道数学题。一个罗马士兵突然出现在他的面前,命令他到马塞勒斯去,遭到了阿基米德的严词拒绝,他表示除非解答出问题,并给出证明,否则是不会去的。这句话把罗马士兵激怒了,就这样,阿基米德丧生在罗马士兵的刀剑之下。

  我还崇拜牛顿呢!因为他曾经说过一段经典的话:“我不知道在别人看来,我是什么样的人,但在我自己看来,我不过就像是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现。”在遥远的1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里,牛顿出生了。牛顿是个早产儿,出生时只有3磅重,接生婆担心牛顿是否能活下来,没想到这样弱小的一个小家伙会长成一位震古烁今的科学巨人。

  除了苹果砸在头上发现了地心引力,牛顿还制造了磨坊的模型、小水钟等。他还发现微积分,对光的研究也有贡献,还构筑力学大厦呢!真是牛呀!

  读完这本《数学家的故事》,我感觉自己全身充满力量。有一次奥数小考试,我被三道难题给难住了,我怎么想都提不出解题方法。这时脑海中似乎传来一个低沉的声音:“潘晨熙,你一定要用尽全部力量,来选取咱们应遵循的道路啊!”哦!原来是笛卡尔爷爷呀!好的,我会尽心尽力做完它们的。“你一定要冷静!”他又说。“我一定会的。”我说。我继续认真审题,啊,我做完了!我要感谢数学家给我的启示,我长大了一定会成为数学家的。

  数学家的故事读后感 篇12

  数学是基础性学科,在人类历史发展,社会和生活中发挥着不可替代的作用,从古至今,涌现出了成千上万的富有创造性的数学家,比如:毕达哥拉斯、伽略、费马、欧拉、阿涅西……他们用自己非凡的智慧和独具一心的创造,为人类社会做出了巨大的贡献。

  在科学界,由于受家庭环境的熏陶,父子都是科学家的情况并不少见,就像祖冲之及他的儿子祖暅之,但一个家族几代人都是科学家,则比较少见,而瑞士的伯努利家族就是一个令人惊叹的学霸之家。

  在这个家族三代人中,产生了近十位科学家,其中有三个成就特别突出。

  雅各布伯努力大学时学习的是艺术专业,但他自学数学,结识了众多数学家,并成为巴塞尔大学的数学教授,此后,雅各布又先后当选为巴黎科学院的外籍院士及柏林科学协会会员。

  约翰伯努利是雅各布的亲兄弟,他解决了悬链线问题,提出洛心达法则、最速降线和测地线问题,还给出了求积分的交量替换法等。同时,作为一位数学教授,约翰还培养出了一批杰出的数学家如:欧拉洛必达……

  雅各布和约翰都在学术领域取得了非凡成就,其后人也青出于蓝而胜于蓝,他就是丹尼尔。

  丹尼尔在1747年成为柏林科学院院士,1748年成为巴黎科学院院士,1750年当选英国皇家学会会员,他还曾十几次获得巴黎科学院奖赏,获奖次数可以与欧拉比肩。

  我努力家族在欧洲享有着极高学术声誉,我想说,这可能就是遗传基因吧,这可能就是留在骨子里那份聪明吧!我是永远做不到的。

  数学家的故事读后感 篇13

  这些天,我读了《数学家的故事》这本书,收获颇多,让我认识了许多在数学领域做出重要贡献的数学家,而我印象最深的就是意大利著名数学家伽利略。

  伽利略出生于一个普通家庭,他家境贫困,但他十分热爱数学,可是他的父母并不支持他,想让他从医,希望能够改善当时的贫困生活,但是伽利略坚信自己的信念,通过多次试验,不断创新,最终征服了大家,而且征服了全世界,发明了天平,发现了惯性定律,研制出了温度计天文望远镜等等。

  数学是奇妙的,数学需要多次实验,认真思考,多去创新,经过一次又一次的失败也不放弃,特别是他当时挑战亚里士多德,撼动了千百年来不可动摇的物理学基础,最终成为成功者。

  从伽利略身上,我发现了我们只有勤奋好学,不耻下问,在学习的道路上,不要在意别人的看法,而是要埋头苦学,取得一点成绩时,更不能沾沾自喜。这让我想起了我自己,以前我对数学理解就是枯燥无味,总是为了完成作业而完成作业,而读了这本书,我一下子明白了数学的有趣性,把实际生活与数学问题有机结合起来也是蛮有趣的,特别是在学习第二章《位置》,我可以以我家为原点,大致估算出不同地方的坐标。这本书让我明白了,在以后的学习中,我要多思考,多动脑,多创新!

本文标题: 读希腊数学读后感(从古希腊数学历史中学到了什么)
本文地址: http://www.lzmy123.com/duhougan/360980.html

如果认为本文对您有所帮助请赞助本站

支付宝扫一扫赞助微信扫一扫赞助

  • 支付宝扫一扫赞助
  • 微信扫一扫赞助
  • 支付宝先领红包再赞助
    声明:凡注明"本站原创"的所有文字图片等资料,版权均属励志妙语所有,欢迎转载,但务请注明出处。
    临江之麋读后感(<<临江之麋>>读后感)读后感 领导干部要善于抓落实(关键在于落实读后感)
    Top