玻尔,上帝不掷骰子。这句话什么意思“玻尔,上帝不掷骰子”这句话是著名物理学家爱因斯坦对玻尔说的。“上帝不会掷骰子”正是爱因斯坦用...
玻尔,上帝不掷骰子。这句话什么意思
“玻尔,上帝不掷骰子”这句话是著名物理学家爱因斯坦对玻尔说的。
“上帝不会掷骰子”正是爱因斯坦用宗教的术语来表达他对量子力学和客观物理世界的根本看法。
爱因斯坦拒绝接受这样一个事实:一些事情是非决定论的——它们发生就是发生了,人们永远找不出原因。在同时代的人中,他几乎是惟一一个还抱此信念的:他坚信宇宙是经典物理式的,像钟表那样机械地嘀嗒运转,每个瞬间都决定着下个瞬间。
掷骰子的这句台词象征了他人生的另一面:提出相对论的物理革命者可悲地变成了保守派,在量子理论方面“落后于时代潮流”——尼尔斯·玻尔(Niels Bohr)这样评价。
然而多年以来,许多历史学家、哲学家和物理学家深入研究爱因斯坦所说的原话之后,他们发现爱因斯坦关于非决定论的思考远比大多数人认为的更激进,也更细致入微。就像他和其他人证明的那样,爱因斯坦其实承认了量子力学的非决定性——理应如此,因为就是他发现了量子力学中的非决定论。而他所不能接受的是,非决定论是大自然的基本原则。
虽然爱因斯坦并不反对量子力学,但他肯定反对哥本哈根诠释。他不喜欢测量会使得连续演化的物理系统出现跳跃这种想法,这就是他开始质疑“上帝掷骰子”的背景。
“爱因斯坦在1926年所惋惜的是这一类具体的问题,而并没有形而上地断言量子力学必须以决定论为绝对的必要条件,”霍华德说,“他尤其沉浸在关于波函数的坍缩是否导致非连续性的思考中。”
爱因斯坦认为,波函数坍缩不可能是一种真实的过程。这要求某个瞬时的超距作用——某种神秘的机制——保证波函数的左右两侧都坍缩到同一个尖峰,甚至在没有施加外部作用的情况下。不仅是爱因斯坦,同时代的每个物理学家都认为这样的过程是不可能的,因为这个过程将会超过光速,显然违背相对论。
实际上,量子力学根本不给你自由掷骰子的机会,它给你成对的骰子,两个骰子的点数总是一样,即使你在维加斯(Vegas)掷一个骰子而另一个人在织女星(Vega)掷另一个。对于爱因斯坦来说,这明显意味着骰子中包含了某种隐藏的性质,可以提前修正它们的结果。但哥本哈根学派否定类似的东西存在,暗示骰子的确可以相隔遥远的空间而互相影响。
爱因斯坦眼中的概率同哥本哈根诠释中的一样客观。虽然它们没有出现在运动的基本定律中,但它们表现了世界的其他特征,因而并不是人类无知的产物。在写给波普尔的信中,爱因斯坦举了一个例子:一个匀速圆周运动的粒子,粒子出现在某段圆弧的概率反映了粒子轨迹的对称性。
类似地,一个骰子的某一面朝上的概率是六分之一,这是因为六面是相同的。“他知道在统计力学中概率的细节里包含有意义重大的物理,在这方面,他的确比那个时代的大多数人都理解得更深。”霍华德说。
对于量子力学测量的上述不可精确预期性或随机性存在好几种不同的解释。其中有两个主要的派别。一是所谓“正统派”,或“哥本哈根学派”,由大多数量子物理学家所持守。二是以爱因斯坦为代表的少数非正统派。
“正统派”以为量子力学(包括量子力学测量)对微观物理系统的描述是完备的。言下之意,随机性或不可精确预期性是客观物理世界的一个根本方面。爱因斯坦至死都不接纳这种观点。他认为量子力学的描述是不完备的。言下之意,随机性或不可精确预期性不是客观物理世界的根本方面,只不过是人们对它的认识不完备而已。“
扩展资料:
阿尔伯特·爱因斯坦(Albert.Einstein,1879年3月14日—1955年4月18日),出生于德国符腾堡王国乌尔姆市,毕业于苏黎世联邦理工学院,犹太裔物理学家。
爱因斯坦1879年出生于德国乌尔姆市的一个犹太人家庭(父母均为犹太人),1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖,1905年创立狭义相对论。1915年创立广义相对论。1955年4月18日去世,享年76岁。
爱因斯坦为核能开发奠定了理论基础,开创了现代科学技术新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。
参考资料:
搜狐-我确信上帝不会掷骰子:被误解的爱因斯坦
百度百科-阿尔伯特·爱因斯坦
爱因斯坦说的“上帝不会掷骰子”。这句话的本意是什么意思?
爱因斯坦的意思就是在说量子力学,也就说是在宇宙当中没有真正意义上的随机,所有的一切都是被安排好的。
在爱因斯坦看来,所谓的随机现象或概率事件中的偶然性,纯粹是人类的认识上的特征。世界万物都有其发展规律,掷骰子就排除了认识世界的可能性。爱因斯坦的这句话后来更衍生出来了宿命论和不可知论的哲学探讨。
扩展资料
来源
二十世纪上半期是量子力学的诞生和成熟期,物理学家们发现,对一个量子系统作单个测量,在原则上不能得到精确的结果,而只能得到获得某种结果的概率是多少。
例如,如果对一个没有被“极化”的电子进行量子力学测量,可以得到自旋±1/2的概率各为1/2,却不能准确预期电子自旋的值究竟为+1/2,或为-1/2。
对于量子力学测量的上述不可精确预期性或随机性存在好几种不同的解释,其中有两个主要的派别。一种是所谓“正统派”或“哥本哈根学派”,由大多数量子物理学家所持守,另一种是以爱因斯坦为代表的少数非正统派。
“正统派”以为量子力学(包括量子力学测量)对微观物理系统的描述是完备的。言下之意,随机性或不可精确预期性是客观物理世界的一个根本方面。
爱因斯坦至死都不接纳这种观点,他认为量子力学的描述是不完备的,也就是说随机性或不可精确预期性不是客观物理世界的根本方面,只不过是人们对它的认识不完备而已。
“上帝不会掷骰子”正是爱因斯坦用宗教的术语来表达他对量子力学和客观物理世界的根本看法。
参考资料来源:百度百科--上帝不会掷骰子
尽管量子论的诞生已经过了一个世纪,其辉煌鼎盛与繁荣也过了半个世纪。但是量子理论曾经引起的困惑至今仍困惑着人们。正如玻尔的名言:“谁要是第一次听到量子理论时没有感到困惑,那他一定没听懂。”薛定谔的猫是诸多量子困惑中有代表性的一个。这个猫十分可怜,她(假设这是一只雌性的猫,以引起更多怜悯)被封在一个密室里,密室里有食物有毒药。毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制。如果原子核衰变,则放出阿尔法粒子,触动电子开关,锤子落下,砸碎毒药瓶,释放出里面的氰化物气体,雌猫必死无疑。这个残忍的装置由薛定谔所设计,所以雌猫便叫做薛定谔猫。原子核的衰变是随机事件,物理学家所能精确知道的只是半衰期——衰变一半所需要的时间。如果一种放射性元素的半衰期是一天,则过一天,该元素就少了一半,再过一天,就少了剩下的一半。但是,物理学家却无法知道,它在什么时候衰变,上午,还是下午。当然,物理学家知道它在上午或下午衰变的几率——也就是雌猫在上午或者下午死亡的几率。如果我们不揭开密室的盖子,根据我们在日常生活中的经验,可以认定,雌猫或者死,或者活。这是她的两种本征态。但是,如果我们用薛定谔方程来描述薛定谔猫,则只能说,她处于一种活与不活的叠加态。我们只有在揭开盖子的一瞬间,才能确切地知道雌猫是死是活。此时,猫的波函数由叠加态立即收缩到某一个本征态。量子理论认为:如果没有揭开盖子,进行观察,我们永远也不知道雌猫是死是活,她将永远到处于半死不活的叠加态。这与我们的日常经验严重相违,要么死,要么活,怎么可能不死不活,半死半活?
薛定谔挖苦说:按照量子力学的解释,箱中之猫处于“死-活叠加态”——既死了又活着!要等到打开箱子看猫一眼才决定其生死。(请注意!不是发现而是决定,仅仅看一眼就足以致命!)正像哈姆雷特王子所说:“是死,还是活,这可真是一个问题。”只有当你打开盒子的时候,迭加态突然结束(在数学术语就是“坍缩(collapse)”),哈姆雷特王子的犹豫才终于结束,我们知道了猫的确定态:死,或者活。哥本哈根的几率诠释的优点是:只出现一个结果,这与我们观测到的结果相符合。但是有一个大的问题:它要求波函数突然坍缩。但物理学中没有一个公式能够描述这种坍缩。尽管如此,长期以来物理学家们出于实用主义的考虑,还是接受了哥本哈根的诠释。付出的代价是:违反了薛定谔方程。这就难怪薛定谔一直耿耿于怀了。
哥本哈根诠释在很长的一段时间成了“正统的”、“标准的”诠释。但那只不死不活的猫却总是像恶梦一样让物理学家们不得安宁。格利宾在《寻找薛定谔的猫》中想告诉我们的是,哥本哈根诠释在哪儿失败,以及用什么诠释可以替代它。
1957年,埃弗雷特提出的“多世界诠释”似乎为人们带来了福音,虽然由于它太离奇开始没有人认真对待。格利宾认为,多世界诠释有许多优点,由此它可以代替哥本哈根诠释。我们下面简单介绍一下埃弗雷特的多世界诠释。
格利宾在书中写道:“埃弗雷特……指出两只猫都是真实的。有一只活猫,有一只死猫,但它们位于不同的世界中。问题并不在于盒子中的放射性原子是否衰变,而在于它既衰变又不衰变。当我们向盒子里看时,整个世界分裂成它自己的两个版本。这两个版本在其余的各个方面都是全同的。唯一的区别在于其中一个版本中,原子衰变了,猫死了;而在另一个版本中,原子没有衰变,猫还活着。”
也就是说,上面说的“原子衰变了,猫死了;原子没有衰变,猫还活着”这两个世界将完全相互独立地演变下去,就像两个平行的世界一样。格利宾显然十分赞赏这一诠释,所以他接着说:“这听起来就像科幻小说,然而……它是基于无懈可击的数学方程,基于量子力学朴实的、自洽的、符合逻辑的结果。”“在量子的多世界中,我们通过参与而选择出自己的道路。在我们生活的这个世界上,没有隐变量,上帝不会掷骰子,一切都是真实的。”按格利宾所说,爱因斯坦如果还活着,他也许会同意并大大地赞扬这一个“没有隐变量,上帝不会掷骰子”的理论。
这个诠释的优点是:薛定谔方程始终成立,波函数从不坍缩,由此它简化了基本理论。它的问题是:设想过于离奇,付出的代价是这些平行的世界全都是同样真实的。这就难怪有人说:“在科学史上,多世界诠释无疑是目前所提出的最大胆、最野心勃勃的理论
周小安
「上帝不会掷骰子」是著名物理学家爱因斯坦的名言。要正确了解这个命题的真正涵意,还需要回到他之所以提出的背景。那就是二十世纪上半期量子力学的诞生和成熟期。物理学家们发现,对一个量子系统作单个测量,在原则上不能得到精确的结果,而只能得到获得某种结果的概率是多少。例如,如果对一个没有被「极化」的电子进行量子力学测量,我们可以得到自旋±1/2的概率各为1/2,却不能准确预期电子自旋的值究竟为+1/2,或为-1/2。
对於量子力学测量的上述不可精确预期性或随机性存在好几种不同的解释。其中有两个主要的派别。一是所谓「正统派」,或「哥本哈根学派」,由大多数量子物理学家所持守。二是以爱因斯坦为代表的少数非正统派。「正统派」以为量子力学(包括量子力学测量)对微观物理系统的描述是完备的。言下之意,随机性或不可精确预期性是客观物理世界的一个根本方面。爱因斯坦至死都不接纳这种观点。他认为量子力学的描述是不完备的。言下之意,随机性或不可精确预期性不是客观物理世界的根本方面,只不过是人们对它的认识不完备而已。「上帝不会掷骰子」正是爱因斯坦用宗教的术语来表达他对量子力学和客观物理世界的根本看法。
从哲学来看,爱因斯坦与「正统派」的争论,焦点并非客观物理世界是否存在秩序和规律(这几乎是所有科学家的共识)。关键在於:这个井然有序的客观世界究竟是完全决定性的,还是为机会、发展、新颖性以及人的自由和神的作为留有实实在在的空间?爱因斯坦显然属於前者。在这一点上,他与另一位著名物理学家牛顿几乎一致,但与其他大多数量子物理学家相反。
爱因斯坦对量子力学与客观物理世界的看法与他的神观或宗教观有密切的关联。爱因斯坦是一位有神论者,但却不是一名基督徒,也不是一名犹太教徒。这是因为,他所相信的神,是超一流的数学家,无限智慧者,但却不是圣经所启示或基督徒所信奉的神。爱因斯坦的神是不吃人间烟火的,更不会为人类的罪,降世为人,死在十字架上,又从死裏复活,叫一切相信的,不至灭亡,反得永生。
爱因斯坦为什么相信上帝不会掷骰子,量子力学真的是真正随机吗?
上帝掷骰子吗?量子物理史话的内容简介
本书是关于量子论的故事。量子论是一个极为奇妙的理论:从物理角度来说,它在科学家中间引起了最为激烈的争议和关注;从现实角度来说,它给我们的社会带来了无与伦比的变化和进步;从科学史角度来说,也几乎没有哪段历史比量子论的创立得到了更为彻底的研究。然而不可思议的是,它的基本观点和假说至今没有渗透到大众的意识中去,这无疑又给它增添了一道神秘的光环。
本书将带你做一次量子之旅。我们从神话时代出发,沿着量子发展的道路,亲身去经历科学史上的乌云和暴雨,追逐流星的辉光,穿越重重迷雾和险滩,和最伟大的物理学家们并肩作战。除了回顾基本的历史背景,我们还将向着未来探险,去逐一摸索量子论面前的不同道路,闯入人迹罕至的未知境地,和先行者们一起开疆扩土。让你惊叹的,不仅仅是沿途那令人眼花缭乱的绚丽风景,更来自于你内心深处的思索和启示——那是科学深植在每个人心中不可抗拒的魅力。
这本书以极具诙谐但又不乏科学严谨的口吻叙述了经典物理和量子力学的碰撞,以及量子力学从无到控制整个微观世界的艰难发展历程,回顾了一些我们曾经学过的经典实验.
走近量子纠缠——上帝掷骰子吗?
量子理论虽然是许多年轻人创建的集体物理学,但领袖人物还是屈指可数的。
1900年,普朗克的论文打开了潘多拉的盒子,释放出‘量子’这个妖精。那年,刚从瑞士的苏黎世工业大学毕业的爱因斯坦,21岁,正在四处奔波,焦头烂额地找工作,15岁的玻尔还只是哥本哈根一个顽皮的中学生。谁也料不到,这两个年轻人在十几年后成为了物理界的两大巨擎,而且,在量子理论的基本思想方面,两人巅峰对决,展开了一场一直延续到他们去世的旷世之争。
波尔与爱因斯坦的量子之争可以概括为一个著名的问题:上帝掷骰子吗?要解释清楚这个量子论中的哲学问题,我们首先介绍一下著名的杨氏双缝干涉实验。
杨氏双缝实验比量子论的历史还要早上100年。当初的法国物理学家托马斯·扬用这个简单实验挑战牛顿的微粒说,证明了光的波动性。原始的实验装置异常简单,这实验的影响却波及了几百年。托马斯·扬用经过一个小孔的光作为点光源,点光源发出的光穿过纸上的两道平行狭缝后,投射到屏幕上。然后,观测者可以看到,屏幕上形成了一系列明暗交替的干涉条纹。干涉是波特有的现象,因此,实验中出现的干涉条纹是光的波动性强有力的证明(见图1(a))。
2002年,《物理世界》杂志评出十大经典物理实验,‘杨氏双缝实验用于电子’名列第一名。费曼认为,杨氏双缝电子干涉实验是量子力学的心脏,“包括了量子力学最深刻的奥秘”。
读者应该还记得我们在本文的第一节提到过的量子力学中神秘的‘叠加态’。电子双缝实验证实了电子叠加态的存在。那么,这个实验是如何相关于量子力学?又如何揭示了量子力学中最深刻的奥秘?实验中哪儿出现了神秘的叠加态?这个实验与‘上帝掷不掷骰子’又有什么关系?这些都是需要澄清的问题,且听我们慢慢道来。
首先,为什么说双缝实验中的干涉条纹是波的特征呢?让我们简单说明一下条纹的形成。
再看图1(a),点光源发出的光,作为一种波,抵达狭缝。根据惠更斯原理,波面上的每一点都是一个子波源。因此,经过两条狭缝之后的波,可看作是位于两条狭缝处的子波源所发出的两列波的叠加。‘波的叠加’意味着‘振幅的叠加’:如果两列波到达同一位置时,振动方向相同,叠加后振幅增大;反之,如果振动方向相反,互相抵消,使得叠加后振幅减小。因为叠加后的振动在不同位置的增大或抵消,便形成了屏幕上明暗相间的干涉条纹。(图1(a)右边的图案)
【图1(c)表示的是光波在屏幕上的强度分布。我们看到的曲线p是一条上下振动的图像,这对应于明暗相间强度变化的干涉条纹。】
如上所述,图中的(a)和(c)说明的都是‘双缝实验’的情形,图(b)又是什么呢?那是两次‘单缝实验’的结果。如果将一条狭缝遮住,就可以分别作两次单缝实验,我们发现,这两次单缝实验的结果都没有条纹,单缝实验光强度的分布,即波动振幅的平方,分别由(b)中的曲线p1和p2表示。
我们再次研究(b)、(c)中的曲线:p1、p2是单缝实验的强度分布,p是双缝实验的强度分布。显然,p并不等于p1、p2的简单叠加,事实上,它是单缝实验的振幅叠加后的平方。这是波动的特点,也是干涉条纹的来源。
如果用粒子来作双缝实验,会产生什么结果呢?读者会说:是用粒子,不是波,那就得不到干涉条纹了。答得很对,但是,不要忘了,我们的所谓粒子,有两种,除了经典意义下的粒子外,还有一种量子力学中的行为古怪的粒子。因此,我们遵循费曼设计的实验,对比一下水波、子弹和电子分别通过双缝时的不同行为。
水波的情况刚才已经说明过了,由图1表示。下面的图2则是用子弹(经典粒子)进行双缝实验的结果。
设想用一挺机关枪向狭缝扫射(图2(a)),子弹的发射服从经典概率统计规律。我们假设:一粒一粒发射出来,而又穿过狭缝到达了屏幕的子弹中,50%的几率是通过第一条缝而来,50%的几率通过第二条缝而来。假设每个打到屏幕上的子弹形成一个亮点的话,发射一定数目的子弹之后,在屏幕上就有了一个亮点聚集而成的图像(图2(a)右)。我们从实验结果发现:这个图像不同于波动的情形,它不是明暗相间的干涉条纹,而是从中心到两边,亮度逐渐下降的图像,如图2(c)的曲线p所示。
类似于波动双缝实验,我们也可以分别将狭缝之一关闭,对另一个开缝做两次子弹单缝实验,实验结果的两条亮度分布曲线由图2(b)中的p1、p2表示。比较图1(b)和图2(b),不难看出,子弹单缝实验结果与水波单缝实验结果是相同的。然而,两种情形的双缝实验结果完全不同。子弹双缝实验的结果p,是两个单缝实验结果p1和p2的简单叠加,这是由概率的叠加性决定的。
总结以上所述,水波的双缝实验结果是相干叠加,体现水的波动性;子弹的双缝实验结果是非相干叠加,体现子弹的粒子性。如果我们用电子(或是光子及其它微观粒子)来作实验,结果又将如何呢?
我们可以类似于子弹的情形,用电子枪将电子一个一个地朝着狭缝发射出去。如图3所示:
电子单缝实验的结果如图3中的(b),曲线p1、p2与水波和子弹时一致。然而,电子双缝实验的结果p却是与水波的一样,出现了干涉条纹!
这个结果令经典物理学家们感到意外,因为,实验中的电子,和机枪发射子弹一样,是由电子枪一个一个发射出去的。因为在经典物理中,我们认为电子是粒子。既然是粒子,它的宏观轨道行为,应该和子弹没有实质的差别。双缝实验时,虽然两条缝都是打开的,但是每一个电子,应该象一个子弹那样,只能通过其中的一条缝到达屏幕。这样,结果就应该和子弹的结果一样,应该属于非相干叠加。
实验观察结果也显示,电子的确是像子弹那样,一个一个到达屏幕的,如下图所示,对应于到达屏幕的每个电子,屏幕上出现一个亮点。随着发射的电子数目的增加,亮点越来越多,越来越多……。当亮点多到不容易区分的时候,接收屏上显示出了确定的干涉图案。这是怎么一回事呢?这干涉从何而来?从电子双缝实验,我们会得出一个貌似荒谬的结论:一个电子同时通过了两条狭缝,然后,自己和自己发生了干涉!
让我们运用量子论的概念,来理解电子这种不同寻常的非经典行为:实验中的电子同时穿过了两条狭缝,不就是相似于我们在第一节中说过的:‘电子处于一种叠加态,既在位置A,又在位置B’的情形吗?作为量子论中的叠加态粒子,每个电子(或光子)真是像孙悟空一样,有分身术,一个孙大圣到了两条狭缝处,就变成了两个大圣,同时穿过了两条狭缝!然后,两个真假孙悟空又自己跟自己打起来了!争斗的结果,有可能是双赢,变出一个大孙悟空,打得屏幕上异常明亮;也有可能两败俱伤,真假悟空全死光,那时,就对应于屏幕上暗淡的地方。
因此,双缝实验的结果表明:电子的行为既不等同于经典粒子,也不等同于经典波动,它和光一样,既是粒子又是波,兼有粒子和波动的双重特性,这就是波粒二象性。
读者也许会说:每个电子到底是穿过那条狭缝过来的,我们应该可以测量出来呀。不错,物理学家们也是这样想的。于是,他们便在两个狭缝口放上两个粒子探测器,以判定真假孙悟空到底走的那一边?然而这时,奇怪的事又发生了:两个粒子探测器从来没有同时响过!那好呀,这说明还是只有一个孙悟空,并没有分身。实验者感觉松了口气,刚刚想思考思考这干涉条纹的事,回头一看屏幕,咦?哪有什么干涉条纹呀。物理学家们反复改进、多次重复他们的实验,却只感到越来越奇怪:无论我们使用什么先进测量方法,一旦想要观察电子到底通过哪条狭缝?干涉条纹便立即消失了!也就是说,假孙悟空太狡猾了,他好像总能得知我们已经设置了抓他的陷阱,便隐身遁形不露面。悟空不用分身术,没有真假大圣间的战争,战场上也就没有了叠加和死伤,一切平静,实验给出经典的结果:和子弹实验的图像一模一样!后来,物理学家们给这种“观测影响粒子量子行为”的现象,取了一个古怪的名字,叫做:“波函数坍塌”。就是说:量子叠加态一经测量,就按照一定的概率,塌缩到一个固定的本征态,回到经典世界。而在没有被测量之前,粒子则是处于‘既是此,又是彼’的混合叠加不确定状态。因此,我们无法预知粒子将来的行为,只知道可能塌缩到某个本征态的概率。
以上解释使用的基本上是以波尔为代表的哥本哈根学派对量子理论的诠释。换言之,孙悟空具有分身而同时穿过两个洞的本领。但是,你无法得知他这功夫究竟是怎么回事,他绝不让你看到他玩分身术的详情,他只让你知道几个概率,上天派他到人间来掷骰子!
爱因斯坦不同意哥本哈根派的诠释,生气地说:“玻尔,上帝不会掷骰子!”
玻尔一脸不高兴:“爱因斯坦,别去指挥上帝应该怎么做!”
几十年后的霍金,看着历年的实验记录,有些垂头丧气地说:“上帝不但掷骰子,他还把骰子掷到我们看不见的地方去!”
上帝掷骰子吗?尽管以上霍金之言给出肯定的答案,但似乎至今仍然是个悬而未决的问题。
如果认为本文对您有所帮助请赞助本站