数学读物读后感急急急!1500字左右你看一下这个可以吗,如果太短的话,我还有更长的数学课程标准教师读本》初升入新学段教学,正苦于无从下手,心定后...
数学读物读后感
急急急!1500字左右你看一下这个可以吗,如果太短的话,我还有更长的
数学课程标准教师读本》
初升入新学段教学,正苦于无从下手,心定后,我想到首先应重阅《数学课程标准》,或从中能寻求依托,于是我读了《数学课程标准教师读本》一书。
这本书对数学课程标准的解读有独特的视角:它重在数学教学教育时间层面上的解释,关注内容的现实针对性,而少有理论思辨性的阐发;它重视数学课程标准与数学教学大纲的异同比较,而避免在概念领域作经院式的鉴别陈述。通过阅读,使我再次学习了新课程标准的基本理念、课程目标、内容标准以及课程实施建议,使我进一步理解了标准中一些难以掌握的重要内容,如:基本理念中“人人学有价值的数学”这一条说到,有价值的数学分为显性和隐性、数学思想与数学方法是有区别的等,这些是我以前读新课标体会不到的东西。
读过这本书后,我对课程标准所体现出来的人文精神也有了更深刻的认识。首先,教师在数学教学活动中“是数学学习的组织者、引导者与合作者“,”教师应激发学生的学习积极性、向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法、获得广泛的数学活动经验”,“学生是数学活动的主人”,“学生的数学学习活动应当是一个生动活泼的,主动的和富有个性的过程”,“对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度”……所有这些无不体现着对学生的人文关怀。因此只有在数学教学中师生互动、互相沟通、相互启发、相互补充、共同体验、共享共进,才能实现教学相长和共同发展。
而数学的学习者不仅仅是学到了数学知识,更重要的是学到了因为学习数学而伴随衍生的许多非常重要的品质,如:自尊、自信、自律和积极主动、乐观向上的精神;克服困难、应对挫折的勇气和意志;尊重他人,与他人共同学习、工作和生活的能力;团结、合作、协调的精神;实事求是和独立思考的治学态度。这些都体现了数学教学的人文精神,体现了师生间充满人性、人情、人格之美的价值和意义。
“临渊羡鱼,不如退而结网”一直以来,我一直在做授人以鱼的事,很多学生包括我们自己读书、学习的方法都出奇地一致,研习的成果、心得也就了无新意。《课程标准》中提出 “具有适应终身学习的基础知识、基本技能和方法”的要求。倘若我们用不反思、永不归家结网,我们的鱼迟早会吃光。读过此书后,我在产生羡鱼冲动的同时,产生了结网的需求。
数学课程标准教师读本》
初升入新学段教学,正苦于无从下手,心定后,我想到首先应重阅《数学课程标准》,或从中能寻求依托,于是我读了《数学课程标准教师读本》一书。
这本书对数学课程标准的解读有独特的视角:它重在数学教学教育时间层面上的解释,关注内容的现实针对性,而少有理论思辨性的阐发;它重视数学课程标准与数学教学大纲的异同比较,而避免在概念领域作经院式的鉴别陈述。通过阅读,使我再次学习了新课程标准的基本理念、课程目标、内容标准以及课程实施建议,使我进一步理解了标准中一些难以掌握的重要内容,如:基本理念中“人人学有价值的数学”这一条说到,有价值的数学分为显性和隐性、数学思想与数学方法是有区别的等,这些是我以前读新课标体会不到的东西。
读过这本书后,我对课程标准所体现出来的人文精神也有了更深刻的认识。首先,教师在数学教学活动中“是数学学习的组织者、引导者与合作者“,”教师应激发学生的学习积极性、向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法、获得广泛的数学活动经验”,“学生是数学活动的主人”,“学生的数学学习活动应当是一个生动活泼的,主动的和富有个性的过程”,“对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度”……所有这些无不体现着对学生的人文关怀。因此只有在数学教学中师生互动、互相沟通、相互启发、相互补充、共同体验、共享共进,才能实现教学相长和共同发展。
而数学的学习者不仅仅是学到了数学知识,更重要的是学到了因为学习数学而伴随衍生的许多非常重要的品质,如:自尊、自信、自律和积极主动、乐观向上的精神;克服困难、应对挫折的勇气和意志;尊重他人,与他人共同学习、工作和生活的能力;团结、合作、协调的精神;实事求是和独立思考的治学态度。这些都体现了数学教学的人文精神,体现了师生间充满人性、人情、人格之美的价值和意义。
“临渊羡鱼,不如退而结网”一直以来,我一直在做授人以鱼的事,很多学生包括我们自己读书、学习的方法都出奇地一致,研习的成果、心得也就了无新意。《课程标准》中提出 “具有适应终身学习的基础知识、基本技能和方法”的要求。倘若我们用不反思、永不归家结网,我们的鱼迟早会吃光。读过此书后,我在产生羡鱼冲动的同时,产生了结网的需求。
数学史通论 读后感 800字
初一水平即可读完《数学史》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。
通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。
数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。
第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。
第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。
第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。
天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!
数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如涵数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。
而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。
人们为什么长久以来称数学为“科学的女皇”呢?也许是女皇让人无法亲近的神秘感和让人们向往和陶醉的面容,让人情不自禁地联想起数学吧!
通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。
数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。
第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。
第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。
第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。
天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!
数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如涵数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。
而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。
人们为什么长久以来称数学为“科学的女皇”呢?也许是女皇让人无法亲近的神秘感和让人们向往和陶醉的面容,让人情不自禁地联想起数学吧!
急需数学史读后感
读完《数学史》,心底不由得一阵感动。数学的殿堂是多么的华丽,我们这一本本厚厚的高中课本中蕴含着多少前人的探索,未来的数学史会不会因为我们的发现创造而改写? 数学,似乎是一个枯燥的学科,但是,却是我们生活里最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平称,是我们量化自己的必要工具……是的,数学是一个“工具箱”!那么,前人是怎么样把这个工具弄得更为人性化,更能让我们好好地使用呢?看完《数学史》,我知道了许多。 数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。 数学的发展决不是一帆风顺的,更是一部充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的情景剧。在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。 第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是,希帕苏斯却被无情地抛进了大海。不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯! 第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。 第三次数学危机——我们听过这个名字——罗素,但是紧跟在他的身后的两个字却是那么刺眼——“悖论”。“罗素悖论”的出现使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础。与此同时,歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。数学似乎是再也站不起来了。是的,罗素的观点似乎真的很有道理,危机产生后,数学家纷纷提出自己的解决方案,比如ZF公理系统。这一问题的解决到现在还在进行中。罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!不过,我们不能蔑视“罗素悖论”,换种说法,不正是这个“悖论”引起了我们的思考吗?不正是这个“悖论”使我们更有创造精神吗? 前文一直是外国的事件,但是,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。 数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。正是我们不断地为数学这座高楼添砖加瓦,她才能越立越高,越立越扎实!
本文标题: 数字艺术论读后感(小学生艺术与数学读后感)
本文地址: http://www.lzmy123.com/duhougan/285229.html
如果认为本文对您有所帮助请赞助本站