人以超光速飞行可以去到未来吗人以超光速飞行可以去到未来吗,先要去到未来的话并不用超光速,你只要保证在自己不被黑洞吸进去的情况下...
人以超光速飞行可以去到未来吗
先要去到未来的话并不用超光速,你只要保证在自己不被黑洞吸进去的情况下,围绕黑洞转一圈就行了。
大质量的天体(即引力)可以拖慢时间,比如你站在摩天大楼旁边的话,时间都会比站在空旷的野地里的时间要走的慢一些,但是这个慢的量只是10负几十次方秒而已,但是像黑洞那样的大质量就很明显了。
光速 速度的极限 光年 一些情况下我们经常听到光年这个词
比如说 在A点射出光线 光飞行了一年 就是一光年 光飞行了一年到达地球也就是说你现在看到的光是一年以前就存在的光 如果你可以超光速 一瞬间到达A点,而光还需一年才能飞到地球 这时候你在一超光速一瞬间飞回地球 那么当时的地球是1年前的地球
大致是:时间的流动与所取参考系有关.理论上是能的,但现时不行,因为相对论也提出光速不可超越.当然这样的试验就如永动机的研究一样,可能及少疯狂的人会去做这样的试验.
可是霍金的理论又提供啦回到过去的令一办法…虫洞
反正科学家要走的路远着呢
不是的 相对论 之所以称为相对论 是指相对于对现有的已知情况的相对变化,当我们处于相对于已知光速更快的程序中时 我们本身会变慢下来 不是有几出电影或是科幻小说真是以此为主题 在外星以超光速旅行后回到地球,发现已过了若干年。从理论上 速度提升后 周围时间就会更加慢至零 然后就回到过去 但是 要进入这种状态 现在也是理论上不存在的 即便成功了 相对论的真实性也有待考证,如上面某位所说我们最多也是“看到”过去而已怎么说呢 过去的影像跟你赛跑 如果你们速度一样(光速) 那么你永远看不到过去的影像,但如果你的速度更快(超光速) 那么你就可以追上过去的影像 此时 你再减回光速 那么你就能“看见”过去的影像而过去的影像是看不到你的
超光速飞行。是否代表时间倒流。或是去到未来。当你的速度越接近光速的时候,时间就会变慢,当普通人时间走过50年,而你的时间却只过了5年,就好像你是去到未来了,如果你的速度达到光速,时间停止,超过光速,你就能到过去,根据相对论只能无限接近光速,无法达到,甚至超过
超光速飞行器
目前没有!
我们从物理学的角度分析能否制造超光速飞行器的时候!我们只能依赖目前的物理学理论!主要就是爱因斯坦提出的广义相对论!
首先,如果按照常规的加速方法想要让飞行器加速到光速!根据相对论这是做不到的!物体的速度在接近光速的时候,就不再是日常生活中想象的那样了,它的质量会增加很多!这种效应其实在低速下也有,只是不明显,如果你在跑100米短跑,你的质量可能会增加一个电子的质量那么多呵呵
而当物质接近光速的时候,质量会越来越大,最后在无线趋于光速的时候质量会无限的大!那么所需的能量也是无限的!所以如果想通过常规的加速超过光速理论上是不可能的!
但是广义相对论却并不限制物体移动速度超过光速,反而科学家对广义相对论进行研究发现!我们可以采用其他方法让物体移动速度超过光速!
在广义相对论中认为,空间是可收缩膨胀的,我们可以让我们前方的空间收缩,后方的空间膨胀!这样,看起来我们就超过光速了!但是这样需要的能量很大很大!而且需要负物质,而负物质还没有在实验室里找到!所以这只是理论而已!
当让以上所说都是建立在相对论是正确的理论的基础上!也许我们随着对世界的认识的逐步加深会发现其实相对论不过是局限的理论。那么也许会有超光速的飞行器诞生呢?呵呵!
你是说做梦吗
什么飞行器才可以超光速飞行 很多可以预见的都做得到(目前有理论支援):1、曲率驱动(动力源未知,但有人提出过);2、虫洞(空间扭曲);3、利用四维空间。
这里有不少都是根据v=s/t来得到“超光速”的理论的,并不一定是移动的物体实际上超过了光速,比如说用空间扭曲的技术,把地球上的一个物体,在10S内送到比邻星上,那就是相当于用10S走完了4光年的路程,如果按速度的理解则是大大超过了光速,但实际上我们并没有给这个物体加速,只是把三维空间摺叠了一下,“跳跃”了一下而已
物体接近光速运动会产生“钟慢”和“尺缩”的效应,以光速运动会出现“钟停”和“尺消”的效应,而超光速则会发生“钟倒”和“尺胀”的效应。
如果超光速运动,就可以追上以前发出的光,从而看到从前的东西,感觉时间好象倒流了,这只是外界的时间倒流,根据光速不变原理,从飞行器上发出的光相对于观察者永远是光速,这样观察者的时间也不会改变。以上现象只是视效应,是主观感觉,而不是客观事实。
讨论你这个问题非得避开相对论对超光速的限制,否则没有意义。你看到地球的时间倒流是现象,不是事实,实际上地球的时间还是正流。而且我们还不考虑飞船返航时的加速度以及飞船和地球上的引力场差异,不然问题就太复杂了。
这个问题是这样的,比如你光速运动,外界时间相对你静止,但是你自己该什么时候死还是什么时候死,对外界人来说看到的是你瞬间就死了
人以光速离开地球一年,再以光速返回,那么地球上过去了多长时间?
没有读过爱因斯坦理论的人,肯定认为是两年,因为在我们传统思想里,无论你什么速度离开地球,以什么速度回来,时间总是两年,时间与你去回的速度是无关的。但爱因斯坦的相对论则不那么认为,飞船上的时间与地球上的时间是不同的,由于存在时间差,就有“孪生兄弟”一老一少的现象发生了,生活在飞船上的一个孪生人,坐飞船太空游,由于飞行速度很快,对于他来说,时间逝去就没感觉了,所以,当飞船重返地球时,还是年轻人的摸样,而在地球上的那个人已经满头白发,老态龙钟了,甚至早己死亡。这就是爱因斯坦的时间亏损(慢钟效应)理论的一个结果。他推出这样的理论,很少有人能理解,只有少数人看了他的论证过程,才会恍然大悟!之所以有这个违背常规的理论,是在假定光速在真空环境下,速度永恒不变,且光速在宇宙中速度为最快,没有其他物质的运动能超过它,这样的前提条件下才证明得出的。目前,光速不变,这点已经得到证明。有没有比光速运动更快的物体呢?目前也未发现。所以爱因斯坦的相对论目前就是正确的。也就是说飞船出去两年回来时,地球己经物是人非了,己不是两年的事情了,而是己经过了几千年的时间了。
这个问题涉及到了爱因斯坦的相对论。
首先,相对论禁止人以光速运动,因为人是有静止质量的,加速到光速需要无限能量。如果有人以足够接近光速的速度离开地球,然后再以相同速度返回,那么,地球上的时间会过去多久呢?
钟慢和尺缩效应
在相对论的框架下,时间和空间不再是绝对的存在,它们会随着观测者所在的参照系不同而发生变化。根据狭义相对论的钟慢和尺缩效应,参照系的速度越快,并且越接近光速,时间会变慢到趋于停止流逝,空间会被压缩到趋于零,具体公式如下:
上式中,ΔT和ΔL分别为运动参照系的时间和距离,Δt和Δl分别为相对静止参照系的时间和距离,v为相对速度,c为光速。
如果太空旅行者的运动速度能够达到0.866c,当他在太空中飞行1年返回地球上之时,地球上的时间已经是两年之后。地球人会认为太空旅行者是在前年离开地球,而不是去年。
如果速度更快,时间膨胀效应越显著,例如,当速度为光速的99.9996252%时,经过1年太空飞行的人回到的将会是365年之后的地球,跟他同个时代的人早已不在人世。而如果太空旅行者以这样的速度飞行1天,地球上的时间将会过去1年,这可谓是“天上一天,地上一年”。
究竟谁的时间变慢了?
不过,相对论表明没有绝对时空,也就没有哪个参照系更高级,所有参照系皆平权。既然如此,地球上的人会觉得太空旅行者因为运动而时间变慢,反过来,太空旅行者也会觉得自己是静止的,地球在远离他,所以地球上的时间会变慢。那么,究竟是谁的时间变慢了呢?
事实上,上述问题讨论的时候已经忽略了一个非常关键的东西,那就是加速和减速的过程。太空旅行者乘坐飞船从地球上出发,需要不断加速才能达到亚光速,回到地球上又要进行减速。也就是说,整个过程都是变速运动,而上述的公式只适合惯性参照系,也就是匀速直线运动或者相对静止的情况。经过加速和减速之后,飞船成了非惯性参照系。
由于太空旅行者需要力进行加速和减速,所以太空旅行者会真切地感受到惯性力,真正在加速或者减速运动的是太空旅行者。加速运动不是相对的,地球并没有加速。因此,时间变慢的是太空旅行者,而不是地球。
1g加速运动
如果要在很短时间内加速到亚光速,所需的加速度非常高,人体根本无法承受。对于长期的太空飞行,加速度为恒定1g是最好的选择,因为这样可以模拟在地球上感受到重力的情况。
在进行太空飞行时,前半程可以用1g加速度不断加速,后半程再用1g减速度不断减速。通过这样的方式,其实也能实现远距离的星际之旅,因为钟慢效应也会变得非常明显。
通过计算可知,如果以这种方式飞到1400光年外的开普勒-452b(有着“地球2.0”之称的系外行星),太空旅行者只要经历大约14年的时间。不过,对于地球上的人来说,太空旅行者飞到开普勒-452b需要1402年的时间。
这个问题得用到爱因斯坦的相对论来解释,不过根据相对论,一切有静止质量的物体,它的运动速度都不可能到达光速,所以这里只能按照无限接近于光速来假设。
爱因斯坦的相对论告诉我们光速是不可以逾越的,一切有静止质量的物体其运动速度更是无法达到光速,因为将一个有静止质量的物体加速到光速,意味着需要给这个物体注入无穷的能量,而这在理论上就是无法达到的。在相对论中,当一个物体的运动速度越快的话那么时间对于它来说就过得越慢,当速度跟光速相等的那一刻,时间对于它来说就是已经停止了。
光速是全宇宙最快的速度,光速达到了每秒30万公里,而人类目前飞得最快的飞行器也不过几十千米每秒,这还不到光速的百分之一,月球是距离地球最近的星球,如果有一艘光速飞船的话,那么从地球上到月球上所需的时间不足两秒钟,而几十年前人类从地球前往月球可是整整化了十几天的时间。光速是宇宙速度的极限,根据爱因斯坦的相对论,没有东西可以比光移动的速度更快。
光速虽然不可逾越,但是人类并不甘心,一直以来,人类一直希望突破光速的限制,有人还提出了这样的问题,那就是如果一个人以光速离开地球一年的话,再以光速返回,那么地球上过了多久的时间。这个问题其实是没有答案的,因为如果以光速离开地球,那么时间对这个人而言已经停止了,一秒、一年甚至一亿年对于他来说没有任何区别。
广西有个长寿村,其中有许多百岁老人 。于是,有不少人慕名而至,也移居长寿村,过上了长命百岁的生活。
对于该村长寿的现象,我们只能从特定的地理条件和特殊的生活方式中去寻找答案,而不能将该地方的长寿归结于时间变慢。
时间是人类用于比较不同事物变化的概念,它是人类认识世界的工具 。其本身是不能独立存在的,因而也无所谓快慢一说。任何事物的变化速率,都会因为外部条件的改变而有所增减,即内因通过外因而起作用。
这是一个我们研究物理所应具备的最为起码的常识。如果每一个物体都有自己的时间尺度,那么时间就失去了比较不同事物变化速率的意义了。实际上,那不是时间,而仅只是各种不同事物的变化周期。
类似高台跳水,随着入水速度的增加,水对人体的阻力会越来越大,直至造成不可逆的损伤。
由于真空不空,存在着由不可再分的最小粒子即量子构成的物理背景(量子空间),当物体的运动速度接近于光速时,该物体会受到极大的阻力,从而使物体的能量增加主要以势能的形式来实现,表现为速度具有不变性。而且,其内部的变化速率也会发生相应的改变。
狭义相对论就是描述物体在高速运动的情况下感受到量子空间影响的理论。只是,该理论仅建立了高速现象的表观联系,却并没有提出产生高速效应的物理机制。
于是,爱因斯坦将描述光能量的物理参量弛豫时间即光子相对于量子空间的变化周期,与抽象的时间相混淆,由此得出了时间随速度的增大而变慢这一荒谬的结论。
总之,以光速离开并返回,无论飞船上的宇航员会如何因此而改变其寿命的长短,就统一的时间尺度而言是不会发生变化的。我们不能否认宇航员会因高速运动而产生变化,却将其变化归结为时间尺度的改变。如此思维只能造成逻辑上的混乱。
实际上,如果脱离了具体的物理背景,因速度产生的变化就没有任何现实的物理意义。类似双生子佯谬,我们不知道究竟哪个兄弟 会变得比较年轻了。
人以的光速离开地球一年,再以光速返回,那么地球上过去了多长时间? 参照物不同,回答的结果就不一样!
第一,如果以地球为参照物,以地球的时间来计算,那么, 一个人以光速离开地球,一年,再次以光速返回,对于地球人来说,只是消耗了两年的时间,地球也就是刚刚经过了两年!这就是标准答案! 举例说明,2021年,命令某某人以光速离开地球,以地球的时间为准,2023年必须以光速返回到地球! 在这里,无论什么相对论,答案只可能是一个,那就是,两年时间!
第二,如果以时间为参照物,,一个人以光速飞出地球,两年后,以光速返回地球! 离开地球的这个人,在他身上只发生了两年的时间! 但是在地球上,也许经过了几千年,几万年,甚至几十万年!
但是这里有个难度,以光速飞出地球的人,怎么计算航程,怎么计算时间,才能知道,在地球经过的两年内,能重新返回到地球! 这就是个难题了,需要科学家去实验和考证,我也不知道,通过什么方式才能计算出准确的时间?能准两年内返回地球!
但是,我认为理论是可行的,就好比你做火车,是车在动,还是外面的景在动,只是一个参照物的问题!
说心里话,在地球上的人类,有时间的概念,才会有过去的你,现在的你,未来的你,不同的变化之说法!
可是在茫茫的宇宙里,在多维的空间里,还会有这个时间的概念吗,好像不能再用时间来评价,现在,过去,未来! 需要科学家们,慢慢去研究,真实的宇宙,真实的空间,还有真实的我们! 有很多很多谜团,需要我们一个一个去解开!
也许真向有些科学家所说的那样,我们生活在地球,这个世界上,是被高级生灵设计出来,按着他们编辑好的程序,在慢慢的前行!人类想跳出这个 游戏 圈,真的很难很难!
一切中的一切,都需要科学的进步, 历史 的发展,慢慢被解开!在这里普及一下知识:
光速是指光波或电磁波在真空或介质中的传播速度。真空中的光速是目前所发现的自然界物体运动的最大速度。
它与观测者相对于光源的运动速度无关,即相对于光源静止和运动的惯性系中测到的光速是相同的。物体的质量还跟它运动的速度有关(前提是物体的速度要相当大,能跟光速能比较,比如说光速的1/4),物体的质量将随着速度的增大而增大,当物体的速度接近光速时,它的质量将趋于无穷大,所以有质量的物体达到光速是不可能的。只有静止质量为零的光子,才始终以光速运动着。光速与任何速度叠加,得到的仍然是光速。速度的合成不遵从经典力学的法则,而遵从相对论的速度合成法则。
科学家们坚信没有任何物质或信息能够突破光速,但光脉冲却能够做到。在真空状态下,在不同位置测到的光脉冲似乎以一种难以置信的速度在传播。 在“量子纠缠”现象中,信息的传播速度似乎比光速快。“量子纠缠”的速度至少是光速的1万倍。未来实现超光速的方法可能是跳跃到多维空间中。
但根据爱因斯坦的相对论,没有任何物体或信息运动的速度可以超过真空中的光速时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。
根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的。对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间。对于一切惯性系,运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理。
知识,是孩子通过自己对外界的认识而产生好奇,进一步发挥想象,并最终通过自己的理解得到答案,这也是自我学习能力的培养。要培养孩子的好奇心,首先,要了解孩子自然的天性,以玩乐的教育形式,让孩子在玩乐中认识他们的世界。
人以的光速离开地球一年,再以光速返回,那么地球上过去了多长时间?这个答案在你我的心中,让科学的海洋,慢慢解开谜底吧!让我们向伟人 爱因斯坦老师学习, 好奇心认识世界,解开心中的谜团吧!
假设一切都可以如愿发生,为方便起见,这里就假设你以光速离开地球一年再返回。首先,由于时间是相对的,这里就必须明确“一年”到底是谁的一年,是你的一年还是地球上的一年?
如果是地球上的一年,答案就很简单了,地球上就是过去了一年。但我相信问题并不是这个意思,不然问题就没有任何意义了。问题中的“一年”应该是你的一年。
根据狭义相对论,速度越快时间就相对越慢,如果你能以光速飞行一年再返回,纯理论分析(实际上理论也行不通,但这并不重要,只是假设),地球上已经过去了无穷多时间!
一旦现实中出现“无穷”两字,就会让很多人抓狂。实际上“无穷”更多的也只是体现在数学上才有意义,现实中不会出现无穷的东西,因为具体的东西总是有限的。
所以,“地球过去了无穷多时间”你能理解是什么样的概念吗?如果非要说一个结果的话,那就是地球其实就相当于不存在了,不存在当然你就不能返回地球了。这说明一开始你的假设就是错误的,所以会导出错误的结果,这可以理解为反证法!
狭义相对论告诉我们,严格来讲,我们每个人都位于不同的时空里,只是平时在低速世界,这种不同很难被感觉到。如果上升到亚光速,时空的不同(时间流速速度的快慢)就不能忽视。
问题本身或许对相对论中的“时间膨胀”概念不是太理解,或者不愿意接受。事实上没有必要怀疑时间膨胀,因为时间膨胀原理是建立在两个前提基础上的,其中非常重要的一个前提就是“光速不变原理”,只要这个原理没错,时间膨胀就不会有错!
具有静止质量的物体在加速过程中会因为质能相当原理而不断增加质量,所以反过来就需要更大的能量去进行加速,最终发结果就是物体在到达光速前质量就变成了无限大
以上的推论是爱因斯坦在他的狭义相对论中提出来的,目前人类在大型强子对撞机和加速器中已经验证了“具有静止质量的的物体无法达到光速”这一结论,所以说人也好飞船也罢,都只能无限接近光速而不可能达到它,所以“人以光速离开地球一年再以光速返回,地球上过了多久?”这个问题是没有意义的。
虽然这个问题没有意义,但我们可以根据现有理论推导一下“无限接近光速情况下飞行一年后回到地球会过多长时间?”
还是在爱因斯坦狭义相对论中:“物体的运动速度越快,其时间流逝速度就越慢”,这一点也已经被卫星上的原子钟证明过了。
根据时间膨胀公式,只要物体的运动速度无限接近光速,那么剧烈的时间膨胀效应就会产生“近光速一天,低光速一年”式的效果,如此一来假如未来某人驾驶近光速飞船离开地球一年再返回的话,地球可能会过去几千万甚至几十亿年(主要取决于究竟有多“逼近”光速)
由于我们的太阳在50亿年后就会膨胀成红巨星逼近火星轨道,所以近光速飞船驾驶人如果速度非常接近光速的话,等他回来的时候估计就只能看见一个已经被红巨星吞噬甚至融化的地球了。
著名科幻小说作家刘慈欣当年在《三体:死神永生》中描写了主角误入“死线”后的时间膨胀效应,这次时间膨胀让主角只用了几个月的时间就“穿越”到了几千万年后,一时间沧海桑田默默无言。
人以光速离开地球一年,再以光速返回,那么地球上过去了多长时间?
曾经这是一个很容易回答的问题,拿出光速的钟慢效应公式简单一算就知道了,但这样并不能说明问题,因为这个公式是狭义相对论中延伸出来的,属于暴力解决型,要让大家透彻理解这个问题,还真有点不容易,也许广义相对论可以。
牛顿的绝对时空观到底说了什么?
大神牛顿发现了三大运动定律和万有引力定律之后,一直试图解释引力是靠什么传递的,他借用了亚里士多德的以太的概念,来解释天体之间万有引力的传递。牛顿认为时间和空间是两个独立的概念,彼此之间没有联系,两者具有绝对性,尽管科学界对此也将信将疑,但苦于实在找不到引力传递已经反驳牛顿验证的方式,另外也看在三大运动定律和万有引力定律在天体观测中都解决了大量实际问题份上,大家就先信了牛顿的鞋,因此牛顿的以太说支持下的绝对时空观。
但好景不长,科学界的发现总是不断的挑战绝对时空观, 1859年法国天文学家勒威耶发现的水星进动问题首先就触碰到了牛顿的绝对时空观,因为怎么计算都发现水星应该和观测到的轨迹不一致,它肯定在太阳周围绕弯路了,但也缺少证据。
1887年的迈克尔逊莫雷实验则推翻了以太假说,当然科学界不会如此武断,这个实验断断续续到二十世纪初仍然在激烈讨论中。
如何通俗的来理解爱因斯坦的广义相对论简单的说,广义相对论认为是质量改变了空间的结构,使得水星在太阳周围的弯曲空间中“迷路”了,这就是以绝对时空为依据计算和实际观测之间差异的根源,表面似乎只解决了水星进动问题,但事实上却是将牛顿的绝对时空观直接拉下了神坛。
广义相对论认为,时空是一个不可分割的整体,质量在改变空间的同时也改变了时间,这个结论是震撼的,比如说我们两个带着校准好的原子钟,旅行去了一个地方,回来却发现两个钟不一致了,这不是挑战认知么?事实上就是这样,能改变时间的不止是质量,还有速度。
广义相对论的时空观认为,时间和空间不是独立的概念,它们之间的纽带是速度,速度越快在单位时间内跨越的距离就越远,但就时空结构而言,这个速度有一个上限,那就是光速!光速就是时空的结构特性,也许我们可以简单的理解为,空间的距离就代表着时间,而这个衡量尺度就是光速!
因此当我们话题中的速度达到光速时,衡量空间的尺度就依然有效,但时间却处在了比较尴尬的地位,因为你会发现似乎不需要时间光速就能跨过这个尺度,当然这是针对光速旅行者而言,因为根据相对论时空观,观测者所处的位置时间仍然正常流逝,而对于观测者而言,光速旅行者已经永生,但这个理论却并不适用光速旅行者,因为光速旅行者的计时工具中时间依然在流逝,但这个时间与外界时间已经不再同步。
我们无法将一个停滞时间中的过去的一段时间换算成观测者所处的时空中的时间,因为这将出现一个除数为0的算式,所以对于这个问题:"光速离开地球一年,再以光速返回,那么地球上过去了多长时间?"需要寻求答案时,将会非常困难,因为这不可换算!
科幻小说和电影中如何描述?对于时间的描述,科幻小说《三体》中星环号载着死神程心以极度接近光的速度到达目的地,只用了52小时就跨过了在地球人看来需要287年才能到达距离,而事实上地球真正经过的时间就是287年,这就是速度的魅力!
关于质量影响时间,《星际穿越》中的形容是很透彻的,卡冈图雅黑洞附近的米勒行星受到引力影响,时间变慢,而轨道上的老黑却是普通时间,如果不是以广义相对论理解,那么这剧情就是BUG,但各位肯定不会这样认为。而最终库伯被关闭的五维空间丢到了土星附近,很多朋友问,库伯的宇航服内氧气有限,为什么被巡逻飞船发现是还没死?当然这是剧情需要,但从另一个角度来解释,黑洞内受到巨大引力影响,这是一个只能用理论物理来讨论的世界,时间?也许不需要的,外界多久都可以,对于库伯就像刚刚发生。
单纯靠加速的方式无法加速至光速,这是铁律,当然你可以走捷径,依靠一些现在看来较为科幻的办法,比如虫洞、曲速、跃迁等等。
题主主要是想体会一下时间膨胀的感觉,这个好办,下面给你计算一下,你就知道多么夸张了。
假设某人驾驶一艘靠单纯加速加速至0.99999999999999c(14个9)速度的飞船,离开地球一年,然后再以相同的速度返回(还是需要用一年的时间),地球上的时钟过去了多久,那位驾驶员的时钟又过去了多久呢?
哦,对了,你这个离开地球一年,是驾驶人过去一年,还是地球时间?
如果是驾驶人过去了一年,那么地球上就过去了707万年,这么一来一回,驾驶人感觉上只是过去了2年,但地球上已经过去了1400万年了。
这就是典型的时间膨胀,也是那个著名的双生子问题。
当你的运动速度越快,时间就膨胀了,在你的时间中时间就变慢了,当你的速度越快,你的时间流逝的就越慢,所以才造成了你以0.99999999999999c(14个9)的速度飞行,时间膨胀明显,你过去了一年,地球上已过去707万年了。
每秒三十万公里的光速是我们宇宙的极限速度,同时也是信息传递速度的上限,所以不传递信息的宇宙膨胀和量子纠缠现象超光速并不能说明什么
由于光子静止时质量为0,因此光子并不受狭义相对论质能等效原理的制约 ,而由光子以外其他物质构成的人类包括未来人类的飞船在静止时都拥有质量,所以在向光速冲击的过程中自身质量会以为“质能相当”而增加,且增速还是急剧上升的。
根据E=MC²,有静止质量的物体在加速到光速前自身质量就会变成无限大,但宇宙中并不存在无限多的能量来让它进一步加速, 因此爱因斯坦告诉我们“静止质量不为0的物体无法达到光速或者超过光速” ,目前看来只有“虫洞”或者“曲速泡”有可能绕开光速限制。
在真正以光速飞行的光子“看来”,由于自身速度极快因此时间对光子来说就是静止的,如果光子有意识那么在它的感觉中自己是一瞬间就从太阳表面到达地球的, 只不过在低速运动状态下的地球人看来光子是足足飞了8分20秒才从太阳到地球的。
基于以上的时间膨胀原理,我们可以大胆假设:
而如果“大撕裂”理论没错的话,宇宙膨胀的力量在未来将会把宇宙中所有原子撕碎,因此“光人”一年后回到地球位置,地球就已经完全消失不见了, 至于究竟过了多少时间,答案是近乎无限长。
如果真的可以研制出超光速的机器,人类身体能否承受住这种极限?
不会。时间只是人类虚拟出来的,时间永远不会倒流,无限接近光速只是这个运动物体感觉时间变慢了而已。常规宇宙中,人类的能源不足以支撑超光速飞行,但是,也许以后可以发现折叠宇宙,比如虫洞,弯曲时空,然后抄捷径,走时空隧道,相当于实现了超光速飞行。
1994年,物理学家米基儿。阿库别瑞提出可用波动方式拉伸空间,使飞船前方的空间收缩而后方的空间扩张,飞船在太空里“乘”着空间的“波浪”前进。这个“波浪”的区间叫作“曲速泡”,里面是一块平坦时空。飞船在泡内并非真的在移动,而是被泡带着走,并不违反物理学中“光速最快”限制。目前还不知道怎样引发这样的波动,或是一旦引发了,飞船该怎样离开它。因此“阿库别瑞发动机”仍属于理论概念范畴。曲率引擎的原理是将空间拉伸,这与虫洞折叠空间正相反。有趣的是,近年来科学家发现,科幻片中的曲速引擎竟然并不违反物理法则。
哪些技术可以超越光速呢根据广义相对论,我们所在的空间是有弹性的,可以来回伸缩。我们在一些科幻小说中,听说过一个词:“曲速引擎”,这个技术就是利用了空间的这种伸缩弹性特征,实现了超光速飞行。飞船本身是相对静止的,但飞船周围的时空在超光速运动,用这种技术,可以进行宇宙中的超光速飞行。虽然这是小说中出现的概念,但在现实中,科学家还真提出了“曲速引擎”技术,而且这也是人类未来研究得一个方向。
制造超光速的机器可能性不大现代科学的发展应该说是一日千里,而科技应用也是现代科学技术研究的主要发展方向!究其本质人类社会的发展放在宇宙面前还是一个渺小的存在。当然我们可以尽情想象末来世界的发展水平和科技水平,认识水平,或者改造水平,但从发展的科学角度去看,发明一种超光速的飞船还真不是一件简单的事。
宇宙间有没有超过光速的物质,也许有,比如电波,之类超物质的东西,比如我们拥有的思想意识,它是波呢?还是一种超物质呢?所以宇宙间有可能有一种超光速的东西!但用我们人类的智慧去创造这样的飞船之类的东西可能性不大!
人类的寿命太短就算未来曲速引擎实现了,人类也无法在宇宙中自由地穿梭,主要原因是人类的寿命太短了。光的行进速度为每秒30万公里,一光年大约为9万亿公里。离我们最近的仙女座星系大概为250万光年,如果我们想要到它那里去玩,以10倍光速航行的曲速引擎也要25万年才能到,这远远超出了人类的寿命。事实上,人类甚至连银河系都出不去。银河系的直径大约为10万光年,最快的曲速引擎从一边到另一边所花费的时间也要1万年。
人类如果能以光速运动的话,会发生什么事情?
正常情况下,我们看到的物体会因为速度过快而明显弯曲。如果我们人类达到光速,很有可能会看到周围的物体向中间靠近,也有可能是光子赶不上你的速度,导致我们环顾四周的时候一片黑暗。目前由于我们目前的科技无法让人类达到光速,所以我们自己人类达到光速后的场景无法很好的还原,所以只能通过科学理论来猜测我们自己人类达到光速后的场景。
既然已经到了目的地,最重要的就是慢下来。为了科学起见,我们假设人体可以忽略惯性,随着你的运输稳步减速。当你的速度低于某个值时(当然要花很长时间,可能要几代人才能死),你基本可以看到周围的物体。如果你还在地球上,你可能会看到离你出发很远的其他建筑,当然也可能是荒凉的。当你的速度下降到音速时,你应该会在离开时间几百年后收到各种信号(如果人类没有灭绝的话)。
当你完全停下来时,你可能会被一群长相奇怪的生物包围。毫无疑问,你们是同类。同样的,相对论中说物体的质量会随着速度的增加而增加,所以当物体的速度无限接近光速时,这就会导致物体的质量同时变得无限大,而此时物体很可能会因为质量变大而变得无限大,自身的引力也会变得无限大。如果是给我们的话,很可能会变成一无所有或者直接被撕裂。
那么,在正常人眼中,你大概需要3×10∧7s(数据来自百度,请指正)才能达到光速(假设时间不变),但在你的感知中,时间的流逝会逐渐变慢,越接近光速越慢。刚才说过,当我们人类达到光速的时候,时间可能会停止,那么当时间停止的时候,是不是我们人类很像于永生呢?其实并不是这样。即使达到了光速,也只是我们在面对自己的衰老和死亡。死亡的时间变得很慢,无限接近于零,这可能会导致你自己的一分钟的时间,也许别人的几年甚至更长,但总有一天你会衰老而死,因为它似乎没有停止。
如果人以光速行走,将会看到什么?
在物理学的研究中,人们提出过很多佯谬。提出佯谬的目的,是使所研究的问题尖锐化,以便于进一步把理论的基本概念搞清,或弄清逻辑论证中有什么错误,或隐含着什么样的假定,或者忽略了其它什么重要因素,等等。关于狭义相对论就曾提出过两个佯谬,即“双生子佯谬”和“爷孙佯谬”(即超光速运动所导致的时间倒流或因果颠倒问题)。“双生子佯谬”在狭义相对论推广到广义相对论后得到解决,“爷孙佯谬”将在狭义相对论的进一步推广中得到解决。
一、双生子佯谬
设想有两个孪生兄弟甲和乙,甲乘飞船作太空旅行,乙留在地面等待甲。甲所乘坐的飞船在极短的时间内加速到速度v(速度v接近光速c)。然后飞船以速度v作匀速直线飞行,飞船飞行很长一段时间后,迅速调头并继续以速度v作匀速直线飞行。回到地面时紧急减速、降落,并与一直在地面上的乙会合。甲只在启动、调头、减速降落的三段时间内有加速度,其余的绝大部分时间都在作匀速直线飞行,处于狭义相对论适用的惯性系。
按照第一章由洛仑兹变换导出的运动的时钟变慢的关系式
其中,△t为惯性系S的一静止的时钟所走过的时间,△t/为相对于S系以速度v运动的惯性系S/的一静止的时钟走过的时间。
因甲启动、调头、减速降落的时间很短,如果略去这三段时间,则有
τ为甲乘飞船作太空飞行所度过的时间,T为乙在地球上在甲乘飞船作太空飞行期间所度过的时间。即甲作高速太空旅行,返回时发现乙比甲变老了。
如果飞船速度非常接近光速c,相对论效应就会非常明显,如若v = 0.9999c ,则T=70.71τ。即如在这一对孪生兄弟20岁时,甲乘飞船作太空飞行,甲认为飞行时间只有一年,在其返回地面时,甲只有21岁,但他却发现乙却成了90多岁的老人了,亦即乙比甲年老了许多。
但是,以上情形还可以换另一个角度来考察。即对于乘坐太空飞船的甲来说,甲在飞船上静止不动,甲看到乙在极短的时间内朝相反的方向加速到速度v,然后乙以速度v作匀速直线飞行,乙飞行很长一段时间后,迅速调头并继续以速度v作匀速直线飞行,在与甲会合时紧急减速。在甲看来,乙只在启动、调头、减速的三段时间内有加速度,其余的绝大部分时间都在作匀速直线飞行、亦处于狭义相对论适用的惯性系。因此,在甲看来,如果略去乙启动、调头、减速这三段时间(因这三段时间相对很短),在乙离开飞船期间,乙所度过的时间τ/与甲所度过的时间T/也应存在以下关系(狭义相对论一般将相对于静止系统作匀速直线运动的系统内静止的钟所走过的时间记为τ,称为该系统的原时)
这样,在甲乙会面时,甲比乙变老了。即如乙作匀速直线飞行的速度为v = 0.9999c ,在乙飞离甲一年后与甲会面时,乙只有21岁,但他却发现甲却成了90多岁的老人了,亦即甲比乙年老了许多。
可见,从不同的角度分析其结论是不同的,而且是相互矛盾的。究竟是乙比甲年老了许多还是甲比乙年老了许多?还是两者都错了,二人应该一样年轻?这个命题就叫做“双生子佯谬”。
“双生子佯谬”使人们争论了很长时间,爱因斯坦在1918年专门写了一篇文章,以一个访问者和他本人问答的方式,说明了“双生子佯谬”的问题所在,“双生子佯谬”问题才告解决。
人们在讨论“双生子佯谬”问题时,无论从哪个角度考虑,总是为了应用狭义相对论,并认为启动、调头、减速这些过程的时间很短,所以将启动、调头、减速这些过程的时间给忽略了。但“双生子佯谬”问题的关键,恰恰是被忽略了的这些过程所引起的。
在按第一种观点考虑“双生子佯谬”问题时,乙留在地面等待甲,甲乘飞船作太空旅行,甲所乘坐的飞船在启动、调头、减速降落这些过程的加速、减速,都是相对于乙所在的惯性系而言的,所以这些过程没有什么附加的特殊效应,又因这些过程的时间都很短,所以可以将其忽略;而按第二种观点考虑“双生子佯谬”问题时,既认为甲及其所乘坐的飞船静止不动,乙在飞离甲及甲所乘坐的飞船时,乙在启动、调头、减速这些过程的加速、减速,是相对于甲所处的非惯性系而言的。按照广义相对论的等效原理,相当于考察乙的运动的参考系中有一个引力场,虽然甲和乙都处在这一引力场中,但因他们在引力场中所处的位置不同,因而引力场对他们的影响也就不同。在乙启动及减速降落时,甲和乙距离较近,他们的引力场势相差不大,引力场对他们时间的流逝的影响也相差不大,所以仍可将这部分较短的时间忽略。而在乙调头时,由于甲和乙的距离非常遥远,这时乙的引力场势远高于甲,它使乙的时间比甲流逝得要快的多,或者反过来说,它使甲的时间比乙流逝得要慢的多。这一影响超过了乙相对于甲匀速运动期间速度v对时间的影响,使乙飞行归来与甲会合时,乙仍然要比甲变老了。所以乙调头这一过程在考虑“双生子佯谬”问题时是不能忽略的。运用广义相对论进行计算的结果,是乙的时间τ/与甲所度过的时间T/也存在以下关系即乙飞行归来与甲会合时,甲仍然是21岁,而乙是90多岁。
1966年,人们在实验中测得μ子绕圆形轨道高速运动时,其平均寿命比在地面上静止的μ子的平均寿命长。1971年,人们又观察到了放在卫星上绕地球旋转的原子钟比地面上的原子钟走的慢的现象。这些实验证明了广义相对论的正确性,同时也证明了爱因斯坦关于“双生子佯谬”问题论证的正确性。
二、爷孙佯谬
人们在研究狭义相对论的坐标变换,并考虑运动速度v超过光速c的情形时,又提出了“爷孙佯谬”。
由上一节我们知道,两事件的时间间隔与它们的空间位置和考察这两事件的惯性系间的运动状态有关。虽然如此,两事件的先后次序仍应是绝对的,不能因为它们的空间位置和考察这两事件的惯性系间的运动状态不同而改变,即相对论仍然遵循逻辑关系的因果律,亦即要先有因再有果,如去太空旅行须先启程,然后再返回;种田须先播种再收获,人是先出生后死亡。基于这种考虑,人们对相对论进行了如下探讨。
假设惯性系s/相对于惯性系S以速度v作匀速直线运动,S中有两事项P1(x1,t1)和P2(x2,t2),这两事项在s/系的坐标为(x1/,t1/)和(x2/,t2/),例如这两事项是信号由P1传递至P2 ,则信号的传递速度为
根据洛仑兹变换的时间变换关系 得
考虑这两事件的因果关系在两惯性系不变,即它们的先后次序不变,因而有
t2-t1>0 ; t2/-t1/>0
即:
因为v < c ,所以满足上式的充分条件是:
即不破坏因果关系的要求是u≤c,亦即所有信号的传播速度,包括相互作用的传递速度、物体的运动速度都不能超过光速c。否则,如果u>c,则总存在这样的一些惯性系,使t2-t1和t2/-t1/的符号相反,这就意味着将出现时间倒流、因果颠倒的情形。有人据此提出如下命题:如果u>c,即存在超光速而出现时间倒流,那么设想某人进入超光速世界的时间足够长,他的时间不仅倒流到他出生以前,而且倒流到了他父亲出生以前,这时他将他的爷爷杀掉,然后又回到我们的低光速世界,这时他和他父亲是否存在,如果存在,他父亲又怎么出生。人们将这一命题称为“爷孙佯谬”,又称为“祖父悖论”。
有人并不管“爷孙佯谬”或“祖父悖论”的逻辑困难,尽情地在科幻小说、科幻电影、儿童片中发挥着超光速飞行和时间倒流。
第二,即便不承认相对论而能达到,也可以看到一个正常的世界,因为以相对而言以超光速相对你运动的世界是不存在的世界,那么你对它毫无感知,只能感知于自己相对运动缓慢的物体,那么你还是回到了一个低速的世界,改变不了当年的行为。
谢谢!
如果人以光速(0.99c或大于1c)行走/飞行,他将会看见周围的物体在慢慢被拉长,时钟和自己的心跳在减慢,时空可能会变形
如果认为本文对您有所帮助请赞助本站